Wettability Alteration in Near-Wellbore Regions of Gas Reservoirs to Mitigate Liquid Blockage Using Super Water- and Oil-Repellent ZnO/SiO2 Nanofluid Treatment

Document Type : Original Article

Authors

1 Chemical Engineering College, Iran University of Science and Technology (IUST), Narmak, Tehran 16765-163, Iran

2 Institute of Petroleum Engineering, University of Tehran, Iran

20.1001.1.25885596.2017.2.1.2.1

Abstract

In gas-condensate reservoirs as the bottom hole pressure drops below the hydrocarbon dew point of the reservoir fluid, liquids drop out from the gas phase and establish condensate banking near the wellbore, resulting in lower gas productivity. Changing the reservoir rock wettability from liquid-wetting to gas-wetting has outstanding potential in improving the productivity of gas wells. In this work, we report the highly water- and oil-repellent properties of carbonate reservoir rocks treated with a nanofluid based on synthesized ZnO/SiO2 nanocomposites and fluoro-containing materials PTFE, TFE, and PFOS. Carbonate plates coated with the prepared nanofluid exhibits a high contact angle of 162° for brine (contact angle hysteresis=0° and roll-off angle <2°), together with 135° for liquid gas-condensate, supporting significant super-amphiphobicity with self-cleaning properties. Surface characterization of the rock using SEM, SP, and EDX analyses reveals that the rough morphology of ZnO/SiO2 nanocomposites combined with low surface energy of fluorochemical provides the surface superamphiphobicity. Moreover, the efficiency of the nanofluid in wettability alteration of carbonate core from liquid-wetting to ultra gas-wetting under reservoir conditions was investigated by performing gas/liquid two-phase flow tests with single-phase liquid-injection into the gas-saturated core. The results indicate that the mobility of liquid for both gas/brine and gas/liquid-condensate systems increases significantly after wettability alteration.

Keywords

Main Subjects

Article Title [فارسی]

تغییر ترشوندگی سنگ مخازن گاز میعانی در نواحی نزدیک به چاه به منظور کاهش انسداد مایع، از طریق پوششدهی سنگ با نانوسیال دارای خاصیت ابر آبگریزی و ابر نفت

Authors [فارسی]

  • پوریا اسماعیل زاده 1
  • محمدتقی صادقی 1
  • علیرضا بهرامیان 2

1 دانشکده مهندسی شیمی، دانشگاه علم و صنعت ایران، تهران، ایران

2 دانشگاه تهران، انستیتو مهندسی نفت، تهران، ایران

Abstract [فارسی]

در مخازن گاز میعانی بر اثر کاهش فشار مخزن به زیر فشار نقطه ی شبنم هیدروکربوری سیال مخزن، میعانات گازی از فاز گاز جدا شده، به فاز مایع منتقل می شود و در نواحی اطراف چاه تجمع می یابند. در صورت بروز این پدیده که به انسداد میعانی مرسوم است نفوذپذیری نسبی فاز گاز و در نتیجه نرخ تولید گاز از چاه به شدت کاهش می یابد. یکی از روش هایی که پتانسیل قابل توجهی برای رفع این پدیده و افزایش بهره دهی چاه در اختیار دارد تغییر ترشوندگی سنگ مخازن گاز میعانی از حالت مایع دوست به گاز دوست می باشد. در این مقاله، از نانوسیالی حاوی نانوکامپوزیت سنتز شده ی  ZnO/SiO2 و مواد فلئوردار  TFE، PFOS و PTFE برای تغییر ترشوندگی سنگ استفاده شد. بطوریکه کربناته ی مخزن گاز میعانی از حالت شدیداً مایع دوست به حالت ابر آبگریز و ابر نفت گریز توأم (ابرگازدوست) استفاده شد. بطوریکه زاویه تماس آب نمک و نمونه میعانات گازی روی سطح سنگ از  0°  قبل از پوشش دهی، به ترتیب به 162 و 135 درجه پس از پوشش دهی با نانوسیال افزایش یافتند. بعلاوه، پسماند زاویه تماس و همچنین زاویه ی لغزش آب روی سطح پوشش داده شده به ترتیب برابر °0 و °2<  اندازه گیری شد که نشان میدهد سنگ پس از پوشش دهی با این نانوسیال دارای خاصیت خودتمیزشوندگی شده است. مشخصه یابی سطح سنگ به وسیله ی آنالیزهای SP،SEM و EDX نشان داد که زبری نانوکامپوزیت ZnO/SiO2 با مورفولوژی ترکیبی شامل نانو صفحات و نانوذرات کروی، به همراه انرژی سطحی پایین مواد حاوی فلئور سبب بوجود آمدن حالت ابرگازدوستی در سنگ شده است. در ادامه، عملکرد این نانوسیال به منظور تغییر ترشوندگی مغزه ی کربناته از حالت شدیداً مایع دوست به حالت ابر گازدوست تحت شرایط عملیاتی مخزن، با انجام آزمایش های جریان سیال در سیستم گاز / مایع از طریق تزریق تک فازی مایع به درون مغزه ی اشباع شده از گاز مورد مطالعه قرار گرفت. نتایج آزمایش ها نشان داد که تحرک پذیری مایع در هر دو سیستم گاز / آب نمک و گاز/ میعانات گازی بطور قابل ملاحظه ای پس از تغییر ترشوندگی سنگ افزایش یافت.

Keywords [فارسی]

  • گازدوست
  • تغییر ترشوندگی
  • نانوسیال
  • نانوکامپوزیت ZnO/SiO2
  • مخزن گاز میعانی
  • مایع گریز
[1] D. Afidick, N.J. Kaczorowski, S. Bette, Production performance of a retrograde gas reservoir: a case study of the Arun Field, in:  SPE Asia Pacific Oil and Gas Conference, Melbourne, Australia, 1994.
[2] A. El-Banbi, W.D. McCain, M.E. Semmelbeck, Investigation of well productivity in gas-condensate reservoirs, in:  SPE/CERI Gas Technology Symposium, Calgary, Canada, 2000.
[3] M.P. Cimolai, R.M. Gies, D.B. Bennion, D.L. Myers, Mitigating horizental well formation damage in a low-permeability conglomerate gas reservoir, in:  SPE gas Technology Symposium, Calgary, Canada, 1993.
[4] K. Li, A. Firoozabadi, Phenomenological modeling of critical condensate saturation and relative permeabilities in gas/condensate systems, SPE Journal, 5 (2000) 138-147.
[5] K. Li, A. Firoozabadi, Experimental study of wettability alteration to preferential gas-wetting in porous media and its effects, SPE Reservoir Evaluation and Engineering, 3 (2000) 139-149.
[6] G.Q. Tang, A. Firoozabadi, Wettability alteration to intermediate gas-wetting in porous media at elevated temperatures, Transport in Porous Media, 52 (2003) 185-211.
[7] V. Kumar, G.A. Pope, M.M. Sharma, Improving the gas and condensate relative permeability using chemical treatment, in:  SPE Gas Technology Symposium, Calgary, Canada, 2006.
[8] M. Fahes, A. Firoozabadi, Wettability alteration to intermediate gas-wetting in gas condensate reservoirs at high temperatures, SPE Journal, 12 (2007) 397-407.
[9] M. Noh, A. Firoozabadi, Wettability alteration in gas-condensate reservoirs to mitigate well deliverability loss by water blocking, SPE Reservoir Evaluation and Engineering, 11 (2008) 676-685.
[10] X. Xie, Y. Liu, M. Sharma, W.W. Weiss, Wettability alteration to increase deliverability of gas production wells, Journal of Natural Gas Science and Engineering, 1 (2009) 39-45.
[11] S. Wu, A. Firoozabadi, Permanent Alteration of porous media wettability from liquid-Wetting to intermediate gas-wetting, Transport in Porous Media, 85 (2010) 189-213.
[12] K. Li, Y. Liu, H. Zheng, G. Huang, G. Li, Enhanced gas-condensate production by wettability alteration to gas wetness, Journal of Petroleum Science and Engineering, 78 (2011) 505-509.
[13] S. Sharifzadeh, S. Hassanajili, M.R. Rahimpour, Wettability alteration of gas condensate reservoir rocks to gas wetness by sol-gel process using fluoroalkylsilane, Journal of Applied Polymer Science, 128 (2012) 4077-4085.
[14] C. Feng, Y. Kong, G. Jiang, J. Yang, C. Pu, Y. Zhang, Wettability modification of rock cores by fluorinated copolymer emulsion for the enhancement of gas and oil recovery, Applied Surface Science, 258 (2012) 7075-7081.
[15] S.K. Das, S.U.S. Choi, W. Yu, T. Pradeep, Nanofluids: Science and Technology, John Wiley & Sons, Inc Publishing, Hoboken, New Jersey, 2008.
[16] R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, H. Tyagi, Small particles, big impacts: a review of the diverse applications of nanofluids, Journal of Applied Physics, 113 (2013) 0113011–01130119.
[17] D. Tripathi, O. Bég, A study on peristaltic flow of nanofluids: Application in drug delivery systems, International Journal of Heat and Mass Transfer, 70 (2014) 61-70.
[18] H.T. Phan, N. Caney, P. Marty, S. Colasson, J. Gavillet, Surface coating with nanofluids: the effect of pool boiling heat transfer, Nanoscale and Microscale Thermo Physical Engineering, 14 (2010) 229-244.
[19] D. Wen, G. Lin, S. Vafaei, K. Zhang, Review of nanofluids for heat transfer applications, Particuology, 7 (2009) 141-150.
[20] D.T. Wasan, A.D. Nikolov, Spreading of nanofluids on solids, Nature, 423 (2003) 156-159.
[21] R. Saidur, K.Y. Leong, H.A. Mohammad, A review on applications and challenges of nanofluids, Renewable and Sustainable Energy Reviews, 15 (2011) 1646-1668.
[22] A. Karimi, Z. Fakhroueian, A. Bahramian, N. Pour Khiabani, J. Babaee Darabad, R. Azin, S. Arya, Wettability Alteration in Carbonates using Zirconium Oxide Nanofluids: EOR Implications, Energy and fuels, 26 (2012) 1028-1036.
[23] L. Hendraningrat, O. Torsæter, A coreflood investigation of nanofluid enhanced oil recovery, Journal of Petroleum Science and Engineering, 111 (2013) 128-138.
[24] B.A. Suleimanov, F.S. Ismailov, E.F. Veliyev, Nanofluid for enhanced oil recovery, Journal of Petroleum Science and Engineering, 78 (2011) 431-437.
[25] J.S. Nam, P. Lee, S.W. Lee, Experimental characterization of micro-drilling process using nanofluid minimum quantity lubrication, International Journal of Machine Tools and Manufacture, 51 (2011) 649-652.
[26] S. Mokhatab , M.A. Fresky , M.R. Islam Applications of nanotechnology in oil and gas E&P, Journal of Petroleum Technology, 58 (2006) 48-51.
[27] M.S. Zaman, M.R. Islam, S. Mokhatab, Nanotechnology Prospects in the Petroleum Industry, Petroleum Science and Technology, 30 (2012) 1053-1058.
[28] M. Mousavi, S. Hassanajili, M.R. Rahimpour, Synthesis of fluorinated nano-silica and its application in wettability alteration near-wellbore region in gas condensate reservoirs, Applied Surface Science, 273 (2013) 205-214.
[29] M. Aminnaji, H. Fazeli, A. Bahramian, S. Gerami, H. Ghojavand, Wettability alteration of reservoir rocks from liquid wetting to gas wetting using nanofluid, Transport in Porous Media, 109 (2015) 201-206.
[30] Y. Hwang, J. Lee, J. Lee, Y. Jeong, S. Cheong, Y. Ahn, S. Kim, Production and dispersion stability of nanoparticles in nanofluids, Powder Technology, 186 (2008) 145-153.
[31] A. Ghadimi, R. Saidur, M. H., A review of nanofluid stability properties and characterization in stationary conditions, International Journal of Heat and Mass Transfer, 54 (2011) 4051-4068.
[32] I. Uysal, F. Severcana, Z. Evis, Characterization by Fourier transform infrared spectroscopy of hydroxyapatite co-doped with zinc and fluoride, Ceramics International, 39 (2013) 7727-7733.
[33] K. Sowri babu, A. ramachandra Reddy, C. Sujatha, K. Venugopal Reddy, A.N. Mallika, Synthesis and optical characterization of porous ZnO, Journal of Advanced Ceramics, 2 (2013) 260-265.
[34] J.V.G. Tinio, K.T. Simfroso, A.D.M. Peguit, R.T. Candidato Jr, Influence of OH Ion Concentration on the Surface Morphology of ZnO-SiO2 Nanostructure, Journal of Nanotechnology, 2015 (2015) 1-7.
[35] E.G. Pantohan, R.T. Candidato Jr, R.M. Vequizo, Surface characteristics and structural properties of sol-gel prepared ZnO-SiO2 nanocomposite powders, IOP Conference Series: Materials Science and Engineering, 79 (2015) 1-6.
[36] J. El Ghoul, K. Omri, L. El Mir, C. Barthou, S. Alaya, Sol–gel synthesis and luminescent properties of SiO2/Zn2SiO4 and SiO2/Zn2SiO4:V composite materials, Journal of Luminescence, 132 (2012) 2288-2292.
[37] S. Tripathi, R. Bose, R. Roy, S. Nair, N. Ravishankar, Synthesis of hollow nanotubes of Zn2SiO4 or SiO2: mechanistic understanding and uranium adsorption behavior, Appled Materials and Interfaces, 7 (2015) 26430-26436.
[38] H. Butt, C. Semprebon, P. Papadopoulos, D. Vollmer, M. Brinkmann, M. Ciccott, Design principles for superamphiphobic surfaces, Soft Matter, 9 (2013) 418-428.
[39] N. Valipour Motlagh, F.C. Birjandi, J. Sargolzaei, N. Shahtahmassebi, Durable, superhydrophobic, superoleophobic and corrosion resistant coating on the stainless steel surface using a scalable method, Applied Surface Science, 283 (2013) 636-647.
[40] H. Ogihara , J. Xie , J. Okagaki , T. Saji Simple Method for Preparing Superhydrophobic Paper: Spray-Deposited Hydrophobic Silica Nanoparticle Coatings Exhibit High Water-Repellency and Transparency, Langmuir 28 (2012) 4605-4608.
[41] P. Muthiah, B. Bhushan, K. Yun, H. Kondo, Dual-layered-coated mechanically-durable superomniphobic surfaces with anti-smudge properties, Journal of Colloid and Interface Science, 409 (2013) 227-236.
[42] M. Nosonovsky, B. Bhushan, Superhydrophobic surfaces and emerging applications: Non-adhesion, energy, green engineering, Current Opinion in Colloid and Interface Science, 14 (2009) 270-280.
[43] E. Celia, T. Darmanin, E.T. Givenchy, S. Amigoni, F. Guittard, Recent advances in designing superhydrophobic surfaces, Journal of Colloid and Interface Science, 402 (2013) 1-18.
[44] N. Valipour Motlagh, F.C. Birjandi, J. Sargolzaei, Super-non-wettable surfaces: A review, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 448 (2014) 93-106.
[45] A.B.D. Cassie, S. Baxter, Wettability of porous surfaces, Transactions of the Faraday Society, 40 (1994) 546-551.
[46] Q. Xie, J. Xu, L. Feng, L. Jiang, W. Tang, X. Luo, C.C. Han, Facile creation of a super-amphiphobic coating surface with bionic microstructure, Advanced Materials, 16 (2004) 302-305.
[47] T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, Y. Ueda, The lowest surface free energy based on −CF3 alignment, Langmuir, 15 (1999) 4321-4323.
[48] S. Shibuichi, T. Yamamoto, T. Onda, K. Tsujii, Super water- and Oil-repellent surfaces resulting from fractal structure, Journal of Colloid and Interface Science, 208 (1998) 287-294.