Utilizing Chemical Looping Combustion instead of Fired-Furnace in a Steam Methane Reforming for Enhancement of Hydrogen Production in a Multi Tubular Reactor

Document Type : Original Article


1 Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71345, Iran

2 Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71345, Fars, Iran


A novel thermally coupled reactor containing steam methane reforming in the endothermic side and chemical looping combustion as an exothermic side has been investigated in this study. In this innovative configuration, huge fired furnace of conventional steam reforming process is substituted by chemical looping combustion in a recuperative coupled reactor. This reactor has three concentric tubes where the steam methane reforming is supposed to occur in the middle tube and the inner and outer tubes are considered to be air and fuel reactors of chemical looping combustion, respectively. Copper is selected as solid oxygen carrier in the chemical looping combustion process. Both oxidation and reduction of Cu in the air and fuel reactor are exothermic and used as heat sources for endothermic steam methane reforming.  A steady state heterogeneous model of fixed bed for steam reformer and a moving bed for chemical looping combustion reactor predict the performance of this new configuration. The counter-current mode is investigated and simulation results are compared with corresponding predictions of the conventional steam reformer. The results prove that synthesis gas production is increased in thermally coupled reactor in comparison with conventional steam reformer.  


Article Title [فارسی]

جایگزینی چرخه شیمیایی احتراق به جای کوره در فرآیند تبدیل بخار با استفاده از کاتالیست مس

Authors [فارسی]

  • صدیقه کبیری 1
  • محمدرضا رحیم پور 2

1 کارشناسی ارشد مهندسی شیمی، کارمند منطقه 5 عملیات انتقال گاز، شرکت ملی گاز ایران

2 دکتری مهندسی شیمی، استاد بخش مهندسی شیمی، دانشگاه شیراز، شیراز، فارس، ایران

Abstract [فارسی]

این مقاله، به بررسی مدل سازی راکتور کوپلینگ حرارتی دو واکنش کاتالیستی ریفرمینگ متان با بخارآب و چرخه شیمیایی احتراق جهت بهبود میزان تولید هیدروژن می پردازد. کوپلینگ حرارتی دو واکنش گرماگیر و گرماده باعث بهبود بازده حرارتی و در نتیجه افزایش میزان تولید میشود. ریفرمینگ متان با بخارآب فرآیندی گرماگیر است که گرمای آن توسط یک کوره فراهم می شود. در این حالت، لوله های ریفرمرتحت تنش حرارتی بالایی قرار دارند. با جایگزینی این کوره با چرخه شیمیایی احتراق برانیم تا علاوه بر حل این مشکل تولید هیدروژن را در یک فرآیند کوپلینگ افزایش دهیم. چرخه شیمیایی احتراق نوعی احتراق غیر مستقیم است که از دو راکتور هوا و سوخت تشکیل شده است. در این فرآیند از تماس مستقیم سوخت با اکسیژن جلوگیری می شود و شرایط برای واکنش سوخت با یک اکسید فلز فراهم می شود. کوپل این دو واکنش کاتالیستی در یک راکتور سه لوله هم مرکز انجام می شود. راکتور درونی و بیرونی به ترتیب به عنوان راکتورهای هوا و سوخت چرخه شیمیایی احتراق و راکتور میانی راکتور ریفرمینگ متان منظور می شود. راکتور چرخه شیمیایی احتراق بستر متحرک است که مس در آن کاتالیست متحرک است. راکتور ریفرمینگ متان بستر ثابت است که از کاتالیست نیکل پر شده است. شبیه سازی فرآیند با استفاده از یک مدل یک بعدی هتروژن انجام شد. صحت مدل انجام شده با داده های راکتورریفرمینگ متان پالایشگاه گاز زاگرس عسلویه بررسی شد. نتایج حاصل با موارد مشابه در راکتور معمولی ریفرمینگ متان مقایسه شد که افزایش چشمگیر میزان هیدروژن مشاهده شد.

Keywords [فارسی]

  • تولید هیدروژن
  • ریفرمینگ متان با بخارآب
  • چرخه شیمیایی احتراق
  • کاتالیست نیکل و مس
(1)Abad, A., Adánez, J., Garcı´a-Labiano, F., F. de Diego, L., Gayán, P., 2010. Modeling of the chemical-looping combustion of methane using a Cu-based oxygen-carrier. Combust Flame. 157, 602-15.
(2)Adanez, J., F.de Diego, L., Garcia-Labiano, F., Gayan, P., Abad, A., 2004. Selection of oxygen carriers for chemical looping combustion. Energy. Fuels. 18, 371-377.   
(3)Anheden, M., Svedberg, G., 1998. Exergy analysis of chemical looping combustion systems. Energy. Convers. Manage. 39, 1967-1980.
Arab Aboosadi, Z., Rahimpour, M.R., Jahanmiri, A., 2011a. A novel integrated thermally coupled configuration for methane-steam reforming and hydrogenation of nitrobenzene to aniline. Int. J. Hydrogen. Energy. 36, 2960-2968.
Arab Aboosadi, Z., Jahanmiri, A.H., Rahimpour, M.R., 2011b. Optimization of tri-reformer reactor to produce synthesis gas for methanol production using differential evolution (DE) method. Appl. Energy. 88, 2691-2701.
    Bhat, S.A., Sadhukhan, J. 2009. Process intensification aspects for steam methane reforming: an overview. AIChE J. 55,408-422.
Cho, P., 2005. Development and characterization of oxygen-carrier materials for chemical looping combustion. Doctoral thesis, Chalmers University of Technology, Goteborg, Sweden.
Fan, L., Li, F., Ramkumar, S., 2008. Utilization of chemical looping strategy in coal gasification processes. Particuology. 6, 131-142.
F. Brown, L., 2001. A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles. Int. J. Hydrogen. Energy. 26, 381-397.
García-Labiano, F., F.de Diego, L., Adánez, J., Abad, A., Gayán, P., 2004. Reduction and oxidation kinetics of a copper-based oxygen carrier prepared by impregnation for chemical-looping combustion. Ind.  Eng. Chem .Res. 43, 8168-8177.
Gosiewski, K., Bartmann, U., Moszczynski, M., Mleczko, L., 1999. Effect of intraparticle transport limitations on temperature profiles and catalytic performance of the reverse-flow reactor for the partial oxidation of methane to synthesis gas. Chem. Eng. Sci. 54, 4589–602.
Heinzel, A., Vogel, B., Hubner, P., 2002. Reforming of natural gas-hydrogen generation for small scale stationary fuel cell systems. J. Power. Sources. 105(2), 202-7.
Hossain, M.M., L.de Lasa, H., 2008. Chemical looping combustion (CLC) for inherent CO2 separations- a review. Chem. Eng. Sci. 63, 4433-51.
Hunter, J.B., McGuire, G., 1980. Method and apparatus for catalytic heat-exchange. US Patent, 4 214 867.
Ishida, M., Zheng, D., Akehata, T., 1987. Evaluation of a chemical looping combustion power- generation system by graphic exergy analysis. Energy. 12, 147-154.
Itoh, N., Watanabe, S., Kawasoe, K., Sato, T., Tsuji, T., 2008. A membrane reactor for hydrogen storage and transport system using cyclohexane-methycyclohexane mixtures. Desalination. 234, 261-269.
Jerndal, E., Mattisson, T., Lyngfelt, A., 2006. Thermal analysis of chemical-looping combustion. Chem. Eng. Res. Des. 84, 795-806.
Johansson, M., 2007. Screening of oxygen-carrier particles based on iron-, manganese-, copper-, nickel oxides for use in chemical looping technologies. Doctoral thesis, Chalmers University of Technology, Goteborg, Sweden.
Kang K.S., Kim C.H., Bae K.K., Cho W.C., Jeong, S.U., Kim, S.H., Park, C.S., 2012. Modeling a counter-current moving bed for fuel and steam reactors in the TRCL process. Int. J. Hydrogen. Energy. 37, 3251-3260.
 Kang K.S., Kim C.H., Bae K.K, Cho W.C, Kim S.H, Park C.S., 2010. Oxygen-carrier selection and thermal analysis of the chemical-looping process for hydrogen production. Int. J. Hydrogen. Energy. 35, 12246-54.
Koga, Y., Harrison, L.G., 1984. In: Bamford C.H, Tipper C.F.H, Compton R.G. (Eds.), Comprehensive chemical kinetics. Elsevier, Amsterdam. 21, 120.
Kolbitsch, P., Pröll, T., Hofbauer, H., 2009. Modeling of a 120kWchemical looping combustion reactor system using a Ni-based oxygen carrier. Chem. Eng. Sci. 64, 99 –108.
Levenspiel, O., 1998. Chemical reaction engineering. John wiley and sons, New York.
Lokurlu, A., Grube, T., Hohlein, B., Stolten, D., 2003. Fuel cells for mobile and stationary applications- cost analysis for combined heat and power stations on the basis of fuel cells. Int. J. Hydrogen. Energy. 28(7), 703-11.
Lyngfelt, A., Leckner, B., 1999. Technologies for CO2 separation. In minisymposium on CO2 capture and storage. Goteborg: Chalmers University of Technology and University of Gothenburge.
Muller-Langer, F., Tzimas, E., Kaltschmidtt, M., Peteves, S., 2007. Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. Int. J. Hydrogen. Energy. 32, 3797-810.
Nalbandian, L., Evdou, A., Zaspalis, V., 2011. La1-x Srx MyFe1-yO3-s perovskites as oxygen-carrier materials for chemical-looping reforming. Int. J. Hydrogen. Energy. 36, 6657-6670.
Noorman, S., van Sint Annaland, M., Kuipers, H, 2007. Packed bed reactor technology for chemical-looping combustion. Ind. Eng. Chem. Res. 46, 4212-4220.
     Noorman, S., van Sint Annaland, M., Kuipers, J.A.M., 2010. Experimental validation of   paced bed chemical-looping combustion. Chem. Eng. Sci. 65, 92-97.
      Patel,  K.S., Sunol, A.K., 2007. Modeling and simulation of methane steam reforming in a thermally coupled membrane reactor. Int. J. Hydrogen. Energy.32, 2344-58.
Rahimpour, M.R., Arab Aboosadi, Z., Jahanmiri, A.H., 2012. Differential evolution (DE) strategy for optimization of methane steam reforming and hydrogenation of nitrobenzene in a hydrogen perm-selective membrane thermally coupled reactor. Int. J. Energy. Res. DOI: 10.1002/er.2887.
Richter, H.J., Knoche, K.F., 1983. Reversibility of combustion process. In: Gaggioli R.A, editor. Efficiency and costing, second law analysis of process. ACS Symposium Series. Washington DC. pp.71-85
Rostrup-Nielsen  J.R., 1993. Production of synthesis gas. Catal. Today. 18,305-324.
Ryden, M., Cleverstam, E., Lyngfelt, A., Mattisson, T., 2009. Waste products from the steel industry with NiO as additive as oxygen carrier for chemical looping combustion. Int. J. Greenhouse. Gas. Control. 3, 693-703.
Ryden, M., Lyngfelt, A., 2006. Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion. Int. J. Hydrogen. Energy. 31, 1271-1283.
Ryden, M., Lyngfelt, A., Mattisson, T., 2006. Two novel approaches for hydrogen production; chemical-looping reforming and steam reforming with carbon dioxide capture by chemical looping combustion. WHEC. 16, 13-16.
 Simpson, A.P., Lutz A.E., 2007. Exergy analysis of hydrogen production via steam methane reforming. Int.  J. Hydrogen. Energy. 32, 4811-20.
  Song, K.S., Seo Y.S., Yoon, H.Y., Cho, S.J., 2003. Characteristics of the NiO/Hexaaluminate for chemical looping combustion. Korean. J. Chem. Eng. 20, 471-5.
Son, S.R., Kim, S.D., 2006. Chemical looping combustion with NiO and Fe2O3 in a thermo balance and circulating fluidized bed reactor with double loops. Ind. Eng. Chem. Res.  45(8), 2689-2696.
Sun, Z., Liu, F., Lin, X., Sun, B., Sun, D., 2012. Research and development of hydrogen fueled engines in china. Int. J. Hydrogen. Energy. 37, 664-681.
Tugnoli, A., Landucci, G., Cozzani, V., 2008. Sustainability assessment of hydrogen production by steam reforming. Int. J. Hydrogen. Energy. 33, 4345-57.
Villa, R., Cristiani, C., Groppi, G., Lietti, L., Forzatti, P., Cornaro, U., Rossini, S., 2003. Ni based mixed oxide materials for CH4 oxidation under redox cycle conditions. J. Mol. Catal. A: Chem.  204-205, 637–646.
   Ventura, C., Azevedo, J.L.T.  2010. Development of a numerical model for natural gas steam reforming and coupling with a furnace model. Int. J. Hydrogen. Energy. 35,9776-87.
Xu, G., Li, P., Rodrigues, A., 2002. Sorption enhanced reaction process with reactive regeneration. Chem. Eng. Sci. 57, 3893-908.
Xu, J., Froment, G., 1989. Methane steam reforming, methanation and water gas shift: I. Intrinsic kinetics. AIChE. J. 35, 88-96.
Zhang, X., Han, W., Hong, H., Jin, H., 2009. A chemical intercooling gas turbine cycle with chemical-looping combustion. Energy. 34, 2131-2136.