Prediction of H2S and CO2 Solubility in Aqueous MDEA and MDEA/PZ Solutions Using ELECNRTL and ACID GAS Packages

Document Type : Original Article

Authors

1 Department of Chemical Engineering Ferdowsi, University of Mashhad, Mashhad, Iran

2 Department of Chemical Engineering, Ferdowsi University of Mashhad, Iran

20.1001.1.25885596.2018.3.1.1.7

Abstract

In this study, the solubility of acid gases of hydrogen sulfide and carbon dioxide in MDEA and MDEA/PZ aqueous solutions was evaluated by different thermodynamic packages. Comparison of modeling results with a series of laboratory and industrial data released from 1997 to 2010 indicates the high accuracy of ACID GAS thermodynamic package (Aspen HYSYS 8.3) to prediction of acid gases solubility in the mentioned solutions compared to the ELECNRTL thermodynamic package (Aspen plus V8.2), especially in the range of acid gases operational concentration in the gas refineries.

Keywords

Article Title [فارسی]

پیش‌بینی حلالیت گازهای H2S و CO2 در محلول‌های MDEA و MDEA/PZ توسط بسته‌های ترمودینامیکی ACID GAS و ELECNRTL

Authors [فارسی]

  • امید صباغ 1
  • میثم وحیدی فردوسی 2
  • محمدعلی فنایی 2

1 گروه مهندسی شیمی، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

Abstract [فارسی]

در این مطالعه، میزان حلالیت گازهای اسیدی سولفید هیدروژن و دی‌اکسید‌کربن در محلول‌های آبی MDEA و MDEA/PZ توسط بسته‌های مختلف ترمودینامیکی مورد ارزیابی قرار گرفته است. مقایسه نتایج مدل‌‌سازی با مجموعه‌ای از اطلاعات صنعتی و آزمایشگاهی که از سال 1997 تا 2010 منتشر گردیده، نشان از دقت بالای پیش‌بینی حلالیت گازهای اسیدی در محلول‌های مذکور با بسته ترمودینامیکی ACID GAS (نرم‌افزار اسپن ‌هایسیس 3/8) در مقایسه با بسته ترمودینامیکی ELECNRTL (نرم‌افزار اسپن پلاس 2/8) بویژه در محدوده غلظت‌های عملیاتی واحدهای شیرین سازی گاز طبیعی دارد.

Keywords [فارسی]

  • Pz
  • MDEA
  • بسته ترمودینامیکی
  • حلالیت گازهای اسیدی
  • Acid gas
  • ELECNRTL
[1]    R. Deshmukh, A. E. Mather, “A mathematical model for equilibrium solubility of hydrogen sulfide and carbon dioxide in aqueous alkanolamine solutions,” Journal of Chemical Engineering Science, vol. 36, pp. 355-362, 1981.
[2]    M. Posey, K. G. Tapperson, G. T. Rochelle, “A simple model for prediction of acid gas solubilities in alkanolamines,” Journal of Gas Separation and Purification, vol. 1, pp. 181-186, 1996.
[3]    P. Patil, Z. Malik, M. Jobson, “Prediction of CO2 and H2S Solubility in aqueous MDEA solutions using an extended Kent and Eisenberg model,” Institution of Chemical Engineers Symposium Series, vol. 152, pp. 498-510, 2006.
[4]    P. Huttenhuis, N. J. Agrawal, G. F. Versteeg, “Solubility of Carbon Dioxide and Hydrogen Sulfide in Aqueous N-Methyldiethanolamine Solutions,” Journal of Industrial and Engineering Chemistry, vol. 48, pp. 4051–4059, 2009.
[5]    Y. Zhang, H. Que, C. C. Chen, “Thermodynamic modelling for CO2 absorption in Aqueous MEA Solution with electrolyte NRTL model,” Journal of Fuel and Energy Abstracts, vol. 311, pp. 67-75, 2011.
[6]    Y. Zhang, C. C. Chen, “Thermodynamic modelling for CO2 absorption in Aqueous MDEA Solution with electrolyte NRTL model,” Journal of Industrial and Engineering Chemistry, vol. 50, pp. 163-175, 2011.
 [7]   E. Hansen, “Aspen HYSYS and Aspen Plus simulation programs for CO2 absorption,” Master's thesis, Telemark University College, Faculty of Technology, 2011.
[8]    L. E. Øi, “Removal of CO2 from exhaust gas,” M. C. Melaaen, revision of Ph.D. Dissertation Telemark University College Faculty of Technolo at porsgrumm, Norway, 2012.
[9]    L. E. Øi, “Comparison of Aspen HYSYS and Aspen Plus simulation of CO2 absorption into MEA from atmospheric gas,” Journal of Energy procedia, vol. 23, pp. 360-369, 2012.
[10]  Optimize the entire gas process with acid gas cleaning. Available at: http://www.Aspentech .com/ products/V8-releash-prior, August 2013.
[11]  C. C. Chen, H. I. Britt, J. F. Boston, L. B. Evans, “Local composition model for excess Gibbs energy of electrolyte systems,” AIChE Journal, vol. 28, pp. 588, 1982.
[12]  ASPEN Physical Property system, Physical Property Methods and Models, chap.11.1.
[13]  M. L. Posey, G. T. Rochelle, “A Thermodynamic Model of Methyldiethanolamine-CO2-H2S-Water,” Industrial & Engineering Chemistry Research, vol. 36, pp. 3944-3953, 1997.
[14]  R. S. Boumedine, S. Horstmann, K. Fischer, E. Provost, W. Furst, J. Gmehling, “Experimental determination of carbon dioxide solubility data in aqueous alkanolamine solutions,” Fluid Phase Equilibria, vol. 218, pp. 85-94, 2004.
[15]  R. S. Boumedine, S. Horstmann, K. Fischer, E. Provost, W. Furst, J. Gmehling, “Experimental determination of hydrogen sulfide solubility data in aqueous alkanolamine solutions,” Fluid Phase Equilibria, vol. 218, pp. 149-155, 2004.
[16]  M. Dicko, C. Coquelet, C. Jarne, S. Northrop, D. Richon, “Acid gases partial pressures above a 50 wt% aqueous methyldiethanolamine solution: Experimental work and modelling,” Fluid Phase Equilibria, vol. 289, pp. 99-109, 2010.
[17]  F. Y. Jou, F. Otto, A. Mather, “The solubility of mixtures of H2S and CO2 in an MDEA solution,” The Canadian Journal of Chemical Engineering, vol. 75, pp. 1138-1141, 1997.
[18]  P. Huttenhuis, N. J. Agrawal, G. F. Versteeg, “Solubility of carbon dioxide and hydrogen sulfide in aqueous N-methyldiethanolamine solutions,” Industrial & Engineering Chemistry Research, vol. 48, pp. 4051-4059, 2009.
[19]  B. S. Ali, M. K. Aroua, “Effect of piperazine on CO2 loading in aqueous solutions of MDEA at low pressure,” International Journal of Thermophysics, vol. 25, pp. 1863-1870, 2004.
[20]  S. Bishnoi, G. T. Rochelle, “Thermodynamics of piperazine/methyldiethanolamine/water/ carbon dioxide,” Industrial & Engineering Chemistry Research, vol. 41, pp. 604-612, 2002.