Effect of Coating Method and Feed Pressure and Temperature on CO2/CH4 Gas Separation Performance of Pebax/PES Composite Membranes

Document Type : Original Article

Authors

1 Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

2 Advanced Membrane Technology Research Centre (AMTEC), University Technology Malaysia, Malaysia

Abstract

In this study, PES/Pebax composite membranes were prepared by coating the porous PES support layers by Pebax-1657. Film casting and pouring methods were used for coating Pebax layer. The effects of coating technique and conditions including coating solution concentration and curing temperature on CO2 and CH4 gas permeabilities of prepared composite membranes were investigated. SEM images were used to investigate the structure of the prepared membranes. Pure CH4 and CO2 gases were used to investigate the gas permeation properties of the prepared membranes at different trans-membrane pressures (1-11 bar) and feed temperatures (25-55°C). The obtained data showed that the prepared PES supports did not provide any CO2/CH4 selectivity. The results also showed the CO2/CH4 selectivity for the membrane prepared via pouring technique was higher than that of the film casting procedure due to the defect-free Pebax layer formation. CO2 and CH4 permeance increased as the feed temperature increased from 25 to 55°C. The results also showed that CO2 permeance increased from 6.8 to 10.1GPU with an increase in feed pressure from 2 to 12barg, while CH4 permeance remained almost constant and CO2/CH4 selectivity increased from 27 to 42.

Keywords

Article Title [Persian]

اثر روش پوشش و فشار و دمای خوراک بر عملکرد جداسازی دی‌اکسیدکربن/متان غشاهای مرکب Pebax/PES

Authors [Persian]

  • حمیدرضا افشون 1
  • مهدی پورافشاری چنار 1
  • احمد فوزی اسماعیل 2

1 گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه فردوسی مشهد، ایران

2 مرکز تحقیقات پیشرفته فناوری غشا (AMTEC)، دانشگاه فناوری مالزی (UTM)، مالزی

Abstract [Persian]

در این مطالعه غشای مرکب Pebax/PES با پوشش تک لایه Pebax-1657 بر روی لایه متخلخل PES ساخته شد. روش‌های ریخته‌گری و ریزش محلول برای پوشش لایه بالایی استفاده شدند. تاثیر روش پوشش و شرایطی مانند غلظت محلول Pebax و دما بر تراوش‌پذیری CO2 و  CH4 غشاهای مرکب ساخته شده بررسی شد. تصاویر SEM برای بررسی ساختار غشاهای ساخته شده استفاده شد. گازهای خالص  CO2 و  CH4 برای بررسی خواص تراوش‌پذیری غشاهای ساخته شده در فشار و دمای خوراک به ترتیب 1تا barg12 و 25تا °C55 استفاده شدند. نتایج به‌دست آمده نشان داد که زیرلایه PES قبل از پوشش هیچ گزینش‌پذیری CO2/CH4  نداشته است. نتایج همچنین نشان داد که غشاهای ساخته شده با روش ریزش محلول گزینش‌پذیری CO2/CH4  بالاتری نسبت به غشاهای ساخته شده با روش ریخته‌گری داشته که این به دلیل شکل‌گیری لایه انتخابگر بدون نقص در حین پوشش با روش ریزش محلول است. تراوایی دی‌اکسیدکربن و متان با افزایش دمای خوراک از 25 تا °C55 افزایش یافت. نتایج همچنین نشان داد که با افزایش فشار خوراک از 2 تا barg12 تراوایی CO2 از 8/6 تا GPU 1/10  افزایش داشته، ضمن این‌که تراوایی متان تقریبا ثابت مانده و در نتیجه گزینش‌پذیری CO2/CH4 از 27 به 42 افزایش داشته است.

Keywords [Persian]

  • Pebax
  • غشای مرکب
  • جداسازی CO2
  • روش پوشش
  • فشار خوراک
  • دما
Baker, R. W. 2004. Membrane technology and applications. John Wiley & Sons Ltd.
Bennett, M., Brisdon, B., England, R. & Field, R. 1997. Performance of PDMS and organofunctionalised PDMS membranes for the pervaporative recovery of organics from aqueous streams. Journal of Membrane Science, 137, 63-88.
Car, A., Stropnik, C., Yave, W. & Peinemann, K.-V. 2008a. Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: performance with mixed gases. Separation and Purification Technology, 62, 110-117.
Car, A., Stropnik, C., Yave, W. & Peinemann, K.-V. 2008b. PEG modified poly (amide-b-ethylene oxide) membranes for CO2 separation. Journal of Membrane Science, 307, 88-95.
Cheng, J., Hu, L., Ji, C., Zhou, J. & Cen, K. 2015. Porous ceramic hollow fiber-supported Pebax/PEGDME composite membrane for CO2 separation from biohythane. RSC Advances, 5, 60453-60459.
Cheng, J., Hu, L., Li, Y., Ji, C., Zhou, J. & Cen, K. 2016. Improving CO2 permeability of ceramic hollow fibre-supported composite membranes by blending an ionic liquid in the Pebax/PEGDME selective layer. RSC Advances, 6, 2055-2064.
Choi, S.-H., Tasselli, F., Jansen, J. C., Barbieri, G. & Drioli, E. 2010. Effect of the preparation conditions on the formation of asymmetric poly (vinylidene fluoride) hollow fibre membranes with a dense skin. European Polymer Journal, 46, 1713-1725.
Choi, W., Ingole, P. G., Park, J.-S., Lee, D.-W., Kim, J.-H. & Lee, H.-K. 2015. H2/CO mixture gas separation using composite hollow fiber membranes prepared by interfacial polymerization method. Chemical Engineering Research and Design, 102, 297-306.
Freeman, B., Yampolskii, Y. & Pinnau, I. 2006. Materials science of membranes for gas and vapor separation, John Wiley & Sons.
Ismail, A. F., Khulbe, K. & Matsuura, T. 2015. Gas Separation Membranes: Polymeric and Inorganic, Springer.
Ismail, A. F. & Lai, P. Y. 2003. Effects of phase inversion and rheological factors on formation of defect-free and ultrathin-skinned asymmetric polysulfone membranes for gas separation. Separation and Purification Technology, 33, 127-143.
Kargari, A., Shamsabadi, A. A. & Babaheidari, M. B. 2014. Influence of coating conditions on the H 2 separation performance from H2/CH4 gas mixtures by the PDMS/PEI composite membrane. International Journal of Hydrogen Energy, 39, 6588-6597.
Li, S., Wang, Z., Zhang, C., Wang, M., Yuan, F., Wang, J. & Wang, S. 2013a. Interfacially polymerized thin film composite membranes containing ethylene oxide groups for CO2 separation. Journal of Membrane Science, 436, 121-131.
Li, T., Pan, Y., Peinemann, K.-V. & Lai, Z. 2013b. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. Journal of Membrane Science, 425, 235-242.
Lillepärg, J., Georgopanos, P., Emmler, T. & Shishatskiy, S. 2016. Effect of the reactive amino and glycidyl ether terminated polyethylene oxide additives on the gas transport properties of Pebax® bulk and thin film composite membranes. RSC Advances. 6, 11763-11772.
Liu, L., Chakma, A. & Feng, X. 2004. A novel method of preparing ultrathin poly (ether block amide) membranes. Journal of Membrane Science, 235, 43-52.
Madaeni, S., Badieh, M. & Vatanpour, V. 2013. Effect of coating method on gas separation by PDMS/PES membrane. Polymer Engineering & Science, 53, 1878-1885.
Matsuura, T. 1993. Synthetic membranes and membrane separation processes, CRC press.
Mosleh, S., Mozdianfard, M., Hemmati, M. & Khanbabaei, G. 2017. Mixed matrix membranes of Pebax1657 loaded with iron benzene‐1,3,5‐tricarboxylate for gas separation. Polymer Composites, 38, 1363-1370.
Murali, R. S., Ismail, A. F., Rahman, M. A. & Sridhar, S. 2014. Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations. Separation and Purification Technology, 129, 1-8.
Murali, R. S., Sridhar, S., Sankarshana, T. & Ravikumar, Y. 2010. Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes. Industrial & Engineering Chemistry Research, 49, 6530-6538.
Nafisi, V. & Hägg, M.-B. 2014. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. Journal of Membrane Science, 459, 244-255.
Ramon, G. Z., Wong, M. C. & Hoek, E. M. 2012. Transport through composite membrane, part 1: Is there an optimal support membrane? Journal of Membrane Science, 415, 298-305.
Reijerkerk, S. R., Jordana, R., Nijmeijer, K. & Wessling, M. 2011. Highly hydrophilic, rubbery membranes for CO2 capture and dehydration of flue gas. International Journal of Greenhouse Gas Control, 5, 26-36.
Ren, X., Ren, J. & Deng, M. 2012. Poly (amide-6-b-ethylene oxide) membranes for sour gas separation. Separation and Purification Technology, 89, 1-8.
Robeson, L. M. 2008. The upper bound revisited. Journal of Membrane Science, 320, 390-400.
Scofield, J. M. P., Gurr, P. A., Kim, J., Fu, Q., Kentish, S. E. & Qiao, G. G. 2016. Blends of fluorinated additives with highly selective thin-film composite membranes to increase CO2 permeability for CO2/N2 gas separation applications. Industrial & Engineering Chemistry Research, 55, 8364–8372.
Vankelecom, I., Moermans, B., Verschueren, G. & Jacobs, P. 1999. Intrusion of PDMS top layers in porous supports. Journal of Membrane Science, 158, 289-297.
Wijenayake, S. N., Panapitiya, N. P., Nguyen, C. N., Huang, Y., Balkus, K. J., Musselman, I. H. & Ferraris, J. P. 2014. Composite membranes with a highly selective polymer skin for hydrogen separation. Separation and Purification Technology, 135, 190-198.
Yampolskii, Y. & Freeman, B. 2010. Membrane gas separation, Wiley Online Library.
Yong, W. F., Li, F. Y., Xiao, Y. C., Chung, T. S. & Tong, Y. W. 2013. High performance PIM-1/Matrimid hollow fiber membranes for CO2/CH4, O2/N2 and CO2/N2 separation. Journal of Membrane Science, 443, 156-169.
Zhu, L., Jia, W., Kattula, M., Ponnuru, K., Furlani, E. P. & Lin, H. 2016. Effect of porous supports on the permeance of thin film composite membranes: Part I. Track-etched polycarbonate supports. Journal of Membrane Science, 514, 684-695.