Mathematical Modeling to Predict the Rate of Penetration (ROP) Using Genetic Programming

Document Type : Original Article

Authors

Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

20.1001.1.25885596.2019.4.1.5.8

Abstract

Rate of penetration (ROP) model is a mathematical relation between bit penetration rate and properties of formation, drilling fluid and drilling operation conditions. Due to relatively high cost of drilling operations, it is essential to develop an accurate prediction of the ROP to estimate the drilling time and costs. In this paper, a new model has been developed for estimation of ROP in one of Iranian oil fields by implementation genetic programming. In the developed model, ROP has been correlated with 11 effective parameters reported in drilling master log and sonic log including weight on bit, bit rotational speed, total nozzle area size, mud weight, mud yield point, fluid loss and sonic time. For the evaluation of the proposed model, statistical parameters including root-mean-square deviation (RMSD), squared correlation coefficient (R2) and average absolute relative deviation (AARD) were calculated. Real data verification indicated that the developed model is accurate for estimating ROP and can provide useful information when drilling operation is running. The values of squared correlation coefficient and root-mean-square deviation show the reliability of the model.

Keywords

Main Subjects

Article Title [فارسی]

مدل‌سازی ریاضی جهت پیش بینی نرخ نفوذ مته با روش برنامه‌ریزی ژنتیک

Authors [فارسی]

  • سیدعلی سیدالنگی
  • محمدجواد نبوی‌ زاده
  • مستانه حاجی پور

کارشناس ارشد مهندسی حفاری، گروه مهندسی نفت، دانشکده نفت و مهندسی شیمی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

Abstract [فارسی]

مدل نرخ نفوذ مته، یک رابطه ریاضی بین سرعت نفوذ مته و ویژگی های سازند، سیال حفاری و شرایط عملیات حفاری است. به‌دلیل هزینه بالای عملیات حفاری، پیش‌بینی دقیق نرخ نفوذ مته جهت تخمین زمان و هزینه‌های حفاری ضروری است. در این مقاله، یک مدل
جدید جهت پیش‌بینی نرخ نفوذ مته در یکی از میادین نفتی ایران با روش برنامه ریزی ژنتیک ارائه شده است. در مدل ارائه شده، نرخ نفوذمته تابعی از 11 پارامتر موثر گزارش شده در مستر لاگ حفاری و لاگ صوتی شامل وزن روی مته، سرعت چرخش مته، مساحت کل نازل‌ها، وزن گل، نقطه واروی گل، هرزروی سیال و زمان عبور صوت بدست آمد. برای ارزیابی مدل پیشنهادی، پارامترهای آماری شامل جذر میانگین مربعات خطا (RMSD)، مجذور ضریب همبستگی (R2) و میانگین مطلق خطای نسبی (AARD )محاسبه شدند. اعتبار سنجی مدل با استفاده از داده‌های واقعی میدان نشان داد که مدل ارائه شده جهت پیش‌بینی نرخ نفوذ مته دقیق بوده و می‌تواند اطلاعات مفیدی حین عملیات حفاری در دسترس قرار دهد. مقادیر بدست آمده برای مجذور ضریب همبستگی و جذر میانگین مربعات خطا نشان دهنده قابل اطمینان بودن مدل هستند.

Keywords [فارسی]

  • نرخ نفوذ مته
  • برنامه ریزی ژنتیک
  • مستر لاگ
  • لاگ صوتی
  • عملیات حفاری
Abooali, D., Khamehchi, E. 2014. Estimation of dynamic viscosity of natural gas based on genetic programming methodology. Journal of Natural Gas Science and Engineering 21: 1025-1031.
Abooali, D., Khamehchi, E. 2016. Toward predictive models for estimation of bubble-point pressure and formation volume factor of crude oil using an intelligent approach. Brazilian Journal of Chemical Engineering 33: 1083–1090.
Arabjamaloei, R., Shadizadeh, S. 2011. Modeling and Optimizing Rate of Penetration Using Intelligent Systems in an Iranian Southern Oil Field (Ahwaz OilField). Petroleum Science and Technology 29: 1637–1648.
Bahari A., Baradaran Seyed A. 2009. Drilling cost optimization in a hydrocarbon field by combination of comparative and mathematical method. Petroleum Science 6(4): 451–463.
Bourgoyne, A.T., Young, F.S. 1974. A Multiple Regression Approach to Optimal Drilling and Abnormal Pressure Detection. Society of Petroleum Engineers Journal 14: 371-384.
Bourgoyne A.T., Millheim K.K, Chenevert M.E., Young Jr F.S. 1991. Applied Drilling Engineering. Richardson, TX: SPE Textbook Series.
Cheraghi Seifabad M., Ehteshami P. 2013. Estimating the drilling rate in Ahvaz oil field. J Petrol Explor Prod Technol 3:169–173.
Galle, E. M., Woods, H.B. 1963. Best Constant Weight and Rotary Speed for Rotary Rock Bits. New York: American Petroleum Institute.
Guria C., Goli K.K., Pathak A.K. 2014. Multi-objective optimization of oil well drilling using elitist non-dominated sorting genetic algorithm. Petroleum Science 11(1): 97–110.
Kaiser M.J. 2007. A Survey of drilling cost and complexity estimation models. Int. J. Petroleum Science and Technology 1: 1-22.
Kexiong W., Laibin Z., Hongwei J. 2007. Relationship between formation water rate, equivalent penetration rate and volume flow rate of air in air drilling. Petroleum Science 4(4): 62-65.
Kia, S.M. 2012. Genetic Algorithms in MATLAB. Tehran: Kian publication.
Koza, J.R. (1992) Genetic Programming: on the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge.
Masseron J. 1990. Petroleum Economics (4th ed.). Paris: Editions Technip.
Mechem, O.E., Fullerton, H.B.Jr. 1965. Computers invade the rig floor. Oil and Gas Journal.
Miska, S., Ziaja, M.B. 1982. Mathematical Model of the Diamond Bit Drilling Process and Its Practical Application. Annual Fall Meeting of the Society of Petroleum Engineers of AIME.
Mitchell B.J. 1992. Advanced Oil Well Drilling Engineering Handbook and Computer Programs (9th ed.). Dallas, TX: SPE Textbook Series.
Monazami, M., Hashemi, A. Shahbazian, M., 2012. Drilling rate of penetration prediction using artificial neural network: a case study of one of Iranian southern oil fields. Electronic Scientific Journal, Oil and Gas Business 6: 21-31.
Moradi, H., Bahari, M.H., Naghibi Sistani, M.B., Bahari, A. 2010. Drilling rate prediction using an innovative soft computing approach, Scientific Research and Essays 5(13): 1583-1588.
Morrison, G.A., Searson, D.P. Willis, M.J., 2010. Using genetic programming to evolve a team of data classifiers. International Journal of Computer and Information Engineering 4(12): 1815-1818.
Rahimzadeh, H., Mostofi, M., and Hashemi, A. 2011. A New Method for Determining Bourgoyne and Young Penetration Rate Model Constants. Petroleum Science and Technology 29: 886–897.
Reza, M.R., Alcocer, C.F. A Unique Computer Simulation Model Well Drilling: Part I - The Reza Drilling Model., Paper SPE 15108 presented at the SPE 56th California Regional Meeting of SPE, 2-4 April 1986, Oakland, CA, USA.
Searson D.P., Leahy D.E., Willis M.J. 2011. Predicting the Toxicity of Chemical Compounds Using GPTIPS: A Free Genetic Programming Toolbox for MATLAB. In: Ao SI., Castillo O., Huang X., editors. Intelligent Control and Computer Engineering. Lecture Notes in Electrical Engineering, vol 70. Dordrecht: Springer.
Searson, D.P., Leahy, D.E. Willis, M.J., 2010. GPTIPS: an open source genetic programming toolbox for multigene symbolic regression.  IMECS, Hong Kong.
Zare, J., and Shadizadeh S.R. 2014. Managed Pressure Drilling to Increase Rate of Penetration and Reduce Formation Damage. Petroleum Science and Technology 32: 1833–1842.