Optimizing CO2/CH4 Separation Performance of Modified Thin Film Composite Pebax MH 1657 Membrane Using a Statistical Experimental Design Technique

Document Type : Original Article

Author

Department of Safety Engineering, University of Science and Culture, P.O. Box 13145-871, Tehran, Iran

20.1001.1.25885596.2021.6.1.4.1

Abstract

In this research, statistically based experimental design (central composite design, CCD) was applied to analyze and optimize the effect of PEG-ran-PPG (10–50 wt%) as a blending polymer and CuBTC (0–20 wt%) which is a metal organic framework (MOF) as a nano filler on the CO2 permeance and CO2/CH4 ideal selectivity of Pebax MH 1657/polysulfone thin film composite membrane. In fact, the beneficial properties of polymer blending and mixed matrix membranes (MMMs) have been combined. Based on the regression coefficients of the obtained models, the CO2 permeance was notably influenced by PEG-ran-PPG mass content, while the mass content of CuBTC has the most significant effect on the CO2/CH4 ideal selectivity. Experimental and statistical results showed that under the optimum conditions (PEG-ran-PPG: 32.76 wt% and CuBTC: 20 wt%), nearly 620% increase in the CO2 permeance and 43% enhancement in the CO2/CH4 ideal selectivity was observed compared to the neat Pebax membranes.

Keywords

Main Subjects

Article Title [فارسی]

بهینه سازی عملکرد جداسازی غشای بهبود یافته لایه نازک کامپوزیتی Pebax MH 1657 با استفاده از روش طراحی آزمایش

Author [فارسی]

  • طیبه خسروی

گروه مهندسی ایمنی، دانشگاه علم و فرهنگ، صندوق پستی 13145871، تهران، ایران

Abstract [فارسی]

در این پژوهش، روش طراحی آزمایش CCD به منظور بهینه­سازی و تجزیه و تحلیل اثر افزودن پلیمر PEG-ran-PPG (10-50 wt%) بعنوان پلیمر آلیاژکار و ذرات CuBTC (0–20 wt%) که یک نوع MOF بوده بعنوان نانوذرات بر روی تراوایی گاز CO2 و گزینش­پذیری CO2/CH4 غشای لایه نازک کامپوزیتی Pebax MH 1657/polysulfone  مورد استفاده قرار گرفته است. در حقیقت خصوصیات مثبت آلیاژکاری و غشاهای ماتریس آمیخته بصورت همزمان در این پژوهش مورد استفاده قرار گرفته است. بر اساس ضرایب مدل برازش، درصد وزنی PEG-ran-PPG اثر زیادی بر روی تراوایی CO2 داشته درحالیکه درصد وزنی CuBTC بیشترین تاثیر را بر روی گزینش­پذیری CO2/CH4 داشته است. نتایج آزمایشگاهی و آماری نشان دادند که تحت شرایط بهینه (PEG-ran-PPG: 32.76 wt% and CuBTC: 20 wt%)، تراوایی CO2 تقریبا 620 درصد و گزینش­پذیری CO2/CH4 حدود 43 درصد در مقایسه با غشای Pebax افزایش پیدا کرد.

Keywords [فارسی]

  • جداسازی دی اکسید کربن
  • Pebax
  • غشای کامپپوزیتی
  • روش طراحی آزمایش CCD
  1. Reijerkerk, S. R., Knoef, M. H., Nijmeijer, K., Wessling, M., 2010. Poly (ethylene glycol) and poly (dimethyl siloxane): Combining their advantages into efficient CO2 gas separation membranes. Journal of membrane science 352, 126-135.
  2. Li, Y., Liang, F., Bux, H., Yang, W., Caro, J., 2010. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation, Journal of Membrane Science 354, 48–54.
  3. Khosravi, T., Mosleh, S., Bakhtiari, O., Mohammadi, T., 2010. Mixed matrix membranes of Matrimid 5218 loaded with zeolite 4A for pervaporation separation of water–isopropanol mixtures, Chemical Engineering Research and Design 90, 2353–2363.
  4. Khosravi, T., Omidkhah, M., 2015. Preparation of CO2-philic polymeric membranes by blending poly(ether-b-amide-6) and PEG/PPGcontaining copolymer, RSC Advances 5, 12849–12859.
  5. Shahid, S., Nijmeijer, K., 2014. Performance and plasticization behavior of polymer–MOF membranes for gas separation at elevated pressures, Journal of Membrane Science 470, 166-177.
  6. Ahmadi, M., Vahabzadeh, F., Bonakdarpour, B., Mehranian, M., 2006. Empirical modeling of olive oil mill wastewater treatment using loofa-immobilized Phanerochaete chrysosporium, Process Biochemistry 41, 1148-1154.
  7. Amiri, F., Mousavi, S.M., Yaghmaei, S., 2011. Enhancement of bioleaching of a spent Ni/Mo hydroprocessing catalyst byPenicillium simplicissimum, Separation and Purification Technology 80, 566-576.
  8. Lin, H., Freeman, B. D., 2005. Materials selection guidelines for membranes that remove CO2from gas mixtures, Journal of Molecular Structure 739, 57-74.
  9. Lin, H., Freeman, B. D., 2004. Gas solubility, diffusivity and permeability in poly(ethylene oxide), Journal of Membrane Science 239, 105-117.
  10. Munoz, D.M., Maya, E.M., Abajo, J., Campa, J.G., Lozano, A.E., 2008. Thermal treatment of poly(ethylene oxide)-segmented copolyimide based membranes: An effective way to improve the gas separation properties, Journal of Membrane Science 323, 53-59.
  11. Reijerkerk, S.R., Nijmeijera, K., Ribeiro Jr., C.P., Freeman, B.D., Wessling, M., 2011. On the effects of plasticization in CO2/light gas separation using polymeric solubility selective membranes, Journal of Membrane Science 367, 33-44.
  12. Car, A., Stropnik, Ch., Yave, W., Peinemann, K.V., 2008. PEG modified poly(amide-b-ethylene oxide) membranes for CO2separation, Journal of Membrane Science 307, 88-95.
  13. Reijerkerk, S.R., Ijzer, A.C., Nijmeijer, K., Arun, A., Gaymans, R.J., Wessling, M., 2010. Subambient temperature CO2 and light gas permeation through segmented bock copolymers with tailored soft phase, ACS Applied Material Interfaces 2, 551-560.
  14. Bondar, V., Freeman, B.D., Pinnau, I., 2000. Gas transport properties of poly(ether-b-amide) segmented block copolymers, Journal of Polymer Science Part B: Polymer Physics 38, 2051–2062.