Techno-Economic Analysis of Flare Gas to Gasoline (FGTG) Process through Dimethyl Ether Production

Document Type : Original Article


1 Institute of Liquefied Natural Gas (I-LNG), School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran

2 1Institute of Liquefied Natural Gas (I-LNG), School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran

3 Faculty member, Chemistry and Process Engineering Department, Niroo Research Institute, Tehran, Iran



It is well known that burning flare gases and releasing them into the atmosphere has become one of the problems of the oil, gas, and petrochemical industries. If these industries can produce energy or valuable materials from flare gases, it will be very profitable and less harmful to the environment. The purpose of this investigation is to design, simulation and economic evaluation the process of converting flare gas to dimethyl ether (DME) for the production of gasoline, Liquefied petroleum gas (LPG), and hydrogen by Aspen HYSYS v.11 software. The flare gas to gasoline (FGTG) process can be indirect or direct DME production (two scenarios). In the economic comparison of these scenarios, the total product sales, operating profit, total capital cost, desired rate of return (ROR), and payoff period (POP) will be calculated. The economic evaluation results show that using the FGTG process with direct DME production (second scenario) instead of the FGTG process with indirect DME production (first scenario), increases the product sales and operating profit by about 55% and 65%, and also the total capital cost and utility cost is decreased by about 30% and 50%, respectively. Finally, the desired ROR in the FGTG process with direct DME production and indirect DME production is 52 percent/year and 33 percent/year, and the POP for the second scenario is approximately 1.1 years earlier than the first scenario.


Main Subjects

Article Title [فارسی]

تجزیه و تحلیل فنی و اقتصادی فرآیند تبدیل گاز فلر به بنزین (FGTG) از طریق تولید دی‌متیل‌اتر

Authors [فارسی]

  • مصطفی جعفری 1
  • علی وطنی 1
  • محمد شهاب دلجو 2
  • امیرحسین خلیلی گراکانی 3

1 دانشجوی دکترا، انیسیتو گاز طبیعی مایع (I-LNG)، دانشکده مهندسی شیمی، پردیس دانشکده‌های فنی، دانشگاه تهران، تهران، ایران

2 دانشجوی کارشناسی ارشد، انیسیتو گاز طبیعی مایع (I-LNG)، دانشکده مهندسی شیمی، پردیس دانشکده‌های فنی، دانشگاه تهران، تهران، ایران

3 عضو هیئت علمی، گروه پژوهشی شیمی و فرآیند، پژوهشگاه نیرو، تهران، ایران

Abstract [فارسی]

مسئله سوزاندن گازهای فلر و رهاسازی آن‌ها به اتمسفر، به یکی از مشکلات صنایع نفت ، گاز و پتروشیمی تبدیل‌شده است. اگر این صنایع بتوانند انرژی یا مواد ارزشمندی را از گازهای فلر تولید کنند، بسیار سودآور خواهد بود و همچنین محیط‌زیست هم آسیب کمتری خواهد دید. هدف از این تحقیق، طراحی، شبیه‌سازی و ارزیابی اقتصادی فرآیند تبدیل گاز فلر به دی‌متیل‌اتر به‌منظور تولید هم‌زمان بنزین، گاز مایع و هیدروژن در نرم‌افزار Aspen HYSYS v.11 است. فرآیند تبدیل گاز فلر به بنزین (FGTG) می‌تواند از دو مسیر تولید مستقیم یا غیرمستقیم دی‌متیل‌اتر صورت بگیرد (دو سناریو). در مقایسه اقتصادی این دو سناریو، هزینه فروش محصول ، سود عملیاتی، کل هزینه سرمایه‌گذاری، نرخ بازده سرمایه‌گذاری و بازگشت سرمایه محاسبه خواهد شد. نتایج ارزیابی اقتصادی نشان می‌دهد که استفاده از فرآیند FGTG با تولید مستقیم دی‌متیل‌اتر (سناریوی دوم) به‌جای فرآیند FGTG با تولید غیرمستقیم دی‌متیل‌اتر (سناریوی اول) فروش محصول و سود عملیاتی را حدود ۵۵ درصد و ۵۶ درصد افزایش می‌دهد و همچنین کل هزینه سرمایه‌گذاری و هزینه یوتیلیتی به ترتیب حدود ۳۰ درصد و ۵۰ درصد کاهش پیدا می‌کند. سرانجام ، نرخ بازده سرمایه‌گذاری در فرآیند FGTG با تولید مستقیم دی‌متیل‌اتر و تولید غیرمستقیم دی‌متیل اتر به ترتیب ۵۲ درصد در سال و ۳۳ درصد در سال است و همچنین بازگشت سرمایه در سناریوی دوم ۱/۱ سال زودتر از سناریوی اول است.

Keywords [فارسی]

  • گاز فلر
  • دی‌متیل‌اتر
  • بنزین
  • هیدروژن
  • سود عملیاتی
  • عسلویه
Attary, M., 2018. On the numerical solution of nonlinear integral equation arising in conductor like screening model for realistic solvents. Mathematical Sciences12(3), pp.177-183.
Davoudi, M., Aleghafouri, A. and Safadoost, A., 2014. Flaring networks assessment in South Pars Gas processing plant. Journal of Natural Gas Science and Engineering21, pp.221-229.
Ghasemzadeh, K., Jafari, M. and Babalou, A.A., 2016. Performance investigation of membrane process in natural gas sweeting by membrane process: Modeling study. Chemical Product and Process Modeling11(1), pp.23-27.
Ghasemzadeh, K., Jafari, M. and Basile, A., 2017. Theoretical Study of Various Configurations of Membrane Processes for Olefins Separation. International Journal of Membrane Science and Technology4, pp.1-7.
Hajilary, N., Rezakazemi, M. and Shahi, A., 2020. CO2 emission reduction by zero flaring startup in gas refinery. Materials Science for Energy Technologies3, pp.218-224.
Hajizadeh, A., Mohamadi-Baghmolaei, M., Azin, R., Osfouri, S. and Heydari, I., 2018. Technical and economic evaluation of flare gas recovery in a giant gas refinery. Chemical Engineering Research and Design131, pp.506-519.
Hindman, H., 2013, June. Methanol to gasoline technology. In The Twenty-third International Offshore and Polar Engineering Conference. OnePetro.
Icaza, D., Borge-Diez, D. and Galindo, S.P., 2021. Proposal of 100% renewable energy production for the City of Cuenca-Ecuador by 2050. Renewable Energy170, pp.1324-1341.
Iora, P., Bombarda, P., Gómez Aláez, S.L., Invernizzi, C., Rajabloo, T. and Silva, P., 2016. Flare gas reduction through electricity production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects38(21), pp.3116-3124.
Jaccard, M., Hoffele, J. and Jaccard, T., 2018. Global carbon budgets and the viability of new fossil fuel projects. Climatic Change150(1), pp.15-28.
Jafari, M., Ashtab, S., Behroozsarand, A., Ghasemzadeh, K. and Wood, D.A., 2018. Plant-wide Simulation of an Integrated Zero-Emission Process to‎ Convert Flare Gas to Gasoline. Gas Processing Journal6(1), pp.1-20. 10.22108/GPJ.2018.111048.1028
Jafari, M., Ghasemzadeh, K., Yusefi Amiri, T. and Basile, A., 2019. Comparative Study of Membrane and Absorption Processes Performance and their Economic Evaluation for CO2 Capturing from Flue Gas. Gas Processing Journal7(2), pp.37-52. 10.22108/GPJ.2019.116263.1053
Jafari, M., Sarrafzadeh, M.H. and Ghasemzadeh, K., 2020a. Simulation and economic evaluation of heat and power generation from flare gases in a combined cycle power plant. Energy Equipment and Systems8(4), pp.307-322. 10.22059/EES.2020.241289
Jafari, M., Vatani, A. and Deljoo, M.S., 2020b. Simulation and Economic Evaluation of Polygeneration System for Coproduction of Power, Steam, CH3OH, H2, and CO2 from Flare Gas. Iranian Journal of Oil and Gas Science and Technology9(4), pp.93-114. 10.22050/IJOGST.2020.227023.1547
Jafari, M. and Garakani, A.K., 2021a. Techno-Economic Analysis of Heavy Fuel Oil Hydrodesulfurization Process for Application in Power Plants. Iranian Journal of Oil & Gas Science and Technology10(1), pp.40-65.
Jafari, M., Nezhadfard, M. and Khalili-Garakani, A. 2021b. Simulation and Economic Analysis of Combined Desalinated Water and Power Generation from Associated Gases of Cheshmeh Khosh. Iranian Journal of Oil and Gas Science and Technology10(1), pp. 01-014. 10.22050/IJOGST.2020.219350.1536
Jones, S.B. and Zhu, Y., 2009. Techno-economic analysis for the conversion of lignocellulosic biomass to gasoline via the methanol-to-gasoline (MTG) process.
Karamelikli, H., Akalin, G. and Arslan, U., 2017. Oil exports and non-oil exports: Dutch disease effects in the Organization of Petroleum Exporting Countries (OPEC). Journal of Economic Studies.
Lee, S., Gogate, M. and Kulik, C.J., 1995. Methanol-to-gasoline vs. dme-to-gasolne II. process comparison and analysis. Fuel science & technology international13(8), pp.1039-1057.
Lopez-Echeverry, J.S., Reif-Acherman, S. and Araujo-Lopez, E., 2017. Peng-Robinson equation of state: 40 years through cubics. Fluid Phase Equilibria447, pp.39-71.
Luo, X., Wang, M., Oko, E. and Okezue, C., 2014. Simulation-based techno-economic evaluation for optimal design of CO2 transport pipeline network. Applied Energy132, pp.610-620.
Materazzi, M. and Holt, A., 2019. Experimental analysis and preliminary assessment of an integrated thermochemical process for production of low-molecular weight biofuels from municipal solid waste (MSW). Renewable Energy143, pp.663-678.
Meng, H., Wang, M., Aneke, M., Luo, X., Olumayegun, O. and Liu, X., 2018. Technical performance analysis and economic evaluation of a compressed air energy storage system integrated with an organic Rankine cycle. Fuel211, pp.318-330.
Moradi, M., Ghorbani, B., Ebrahimi, A. and Ziabasharhagh, M., 2021. Process integration, energy and exergy analyses of a novel integrated system for cogeneration of liquid ammonia and power using liquefied natural gas regasification, CO2 capture unit and solar dish collectors. Journal of Environmental Chemical Engineering9(6), p.106374.
Nejat, T., Movasati, A., Wood, D.A. and Ghanbarabadi, H., 2018. Simulated exergy and energy performance comparison of physical–chemical and chemical solvents in a sour gas treatment plant. Chemical Engineering Research and Design133, pp.40-54.
Nian, C.W. and You, F., 2013. Design of methanol plant. In EURECHA Student Contest Problem Competition ESCAPE-23 Symp. (p. 25).
Pauletto, G., Galli, F., Gaillardet, A., Mocellin, P. and Patience, G.S., 2021. Techno economic analysis of a micro-Gas-to-Liquid unit for associated natural gas conversion. Renewable and Sustainable Energy Reviews150, p.111457.
Puricelli, S., Cardellini, G., Casadei, S., Faedo, D., Van den Oever, A.E.M. and Grosso, M., 2021. A review on biofuels for light-duty vehicles in Europe. Renewable and Sustainable Energy Reviews137, pp.110398.
Rahimpour, M.R., Jamshidnejad, Z., Jokar, S.M., Karimi, G., Ghorbani, A. and Mohammadi, A.H., 2012. A comparative study of three different methods for flare gas recovery of Asalooye Gas Refinery. Journal of Natural Gas Science and Engineering4, pp.17-28.
Saidi, M., 2018. Application of catalytic membrane reactor for pure hydrogen production by flare gas recovery as a novel approach. International Journal of Hydrogen Energy43(31), pp.14834-14847.
Saebea, D., Authayanun, S. and Arpornwichanop, A., 2019. Process simulation of bio-dimethyl ether synthesis from tri-reforming of biogas: CO2 utilization. Energy175, pp.36-45.
Stanley, I.O., 2009. Gas-to-Liquid technology: Prospect for natural gas utilization in Nigeria. Journal of natural gas science and engineering1(6), pp.190-194.
Sunny, A., Solomon, P.A. and Aparna, K., 2016. Syngas production from regasified liquefied natural gas and its simulation using Aspen HYSYS. Journal of Natural Gas Science and Engineering30, pp.176-181.
Wan, Z., Li, G.K., Wang, C., Yang, H. and Zhang, D., 2018. Effect of reaction conditions on methanol to gasoline conversion over nanocrystal ZSM-5 zeolite. Catalysis Today314, pp.107-113.
Wang, Z., He, T., Li, J., Wu, J., Qin, J., Liu, G., Han, D., Zi, Z., Li, Z. and Wu, J., 2016. Design and operation of a pilot plant for biomass to liquid fuels by integrating gasification, DME synthesis and DME to gasoline. Fuel186, pp.587-596.
Ziyarati, M.T., Bahramifar, N., Baghmisheh, G. and Younesi, H., 2019. Greenhouse gas emission estimation of flaring in a gas processing plant: Technique development. Process Safety and Environmental Protection123, pp.289-298.
Zolfaghari, M., Pirouzfar, V. and Sakhaeinia, H., 2017. Technical characterization and economic evaluation of recovery of flare gas in various gas-processing plants. Energy124, pp.481-491.