Intensification of Liquid Fuel Production Using Nano Fe Catalyst in GTL Process

Document Type : Original Article


1 GAS Doctor of Engineering, Research Institute of Petroleum Industry (RIPI), Tehran, Iran

2 Rasht Branch, Islamic Azad, Rasht, Iran

3 Research Institute of Petroleum Industry (RIPI), Tehran, Iran


An experimental and computational fluid dynamic (CFD) investigation was carried out to intensify the production of gasoline in a bench-scale Fischer –Tropsch Synthesis (FTS) process. A cylindrical reactor with one preheating and one reaction zone was employed. The reactor temperature was controlled using a heat jacket around the reactor’s wall and dilution of the catalyst in the entrance of the reaction zone.  An axi-symmetric CFD model was developed and the non-ideality of the gas mixture was considered using Peng-Robinson equation of state. A kinetic model based on 25 chemical species and 23 reactions was utilized. The model validated against experimental measurements and the validated model employed to investigate the effects of operating conditions on the performance of the reactor. The optimum values of operating conditions including pressure, reactor temperature, GHSV and H2/CO ratio were determined for maximum reactor performance.


Main Subjects

Article Title [Persian]

افزایش راندمان تولید سوخت مایع با استفاده از کاتالیست نانو آهن در فرآیند تبدیل گازطبیعی به مایع

Authors [Persian]

  • محمد ایرانی 1
  • ‌اصغر علیزاده داخل 2
  • یحیی زمانی 3

1 دکترای مهندسی گاز، پژوهشگاه صنعت نفت،‌ تهران،‌ ایران

2 گروه شیمی و مهندسی شیمی، واحد رشت، دانشگاه آزاد اسلامی،‌ رشت،‌ ایران

3 پژوهشگاه صنعت نفت،‌ تهران،‌ ایران

Abstract [Persian]

در این مقاله یک بررسی تجربی و مطالعه CFD با هدف افزایش تولید بنزین با استفاده از فرآیند فیشر- تروپش در یک رآکتور در مقیاس رومیزی (بنچ) انجام گرفت. یک رآکتور استوانه‌ای با یک منطقه پیش گرمکن و یک منطقه واکنش بکار گرفته شد. دمایی رآکتور با استفاده از یک گرمکن کمربندی دور رآکتور، کنترل گردید. همچنین یک مدل CFD با تقارن و در نظرگرفتن غیر ایده‌آلی مخلوط گازی با استفاده از معادله حالت پنگ –رابینسون، توسعه داده شد. تعداد واکنش‌های به کار گرفته شده برای این مدل ۲۳ مورد بود. مدل توسعه داده شده با اطلاعات تجربی اعتبارسنجی گردید. مدل تایید شده برای بررسی اثر شرایط عملیاتی روی کارکرد رآکتور استفاده شد. مقادیر بهینه شرایط عملیاتی شامل فشار، دما، GHSV  ونسبت خوراک برای کارکرد بهینه رآکتور بدست آمدند.

Keywords [Persian]

  • سنتز فیشر-تروپش
  • جی تی ال
  • رآکتور بستر ثابت
  • کاتالیست نانو آهن
  • سی اف دی
[1] H. Schulz, Short history and present trends of Fischer–Tropsch synthesis, Appl. Catal. A-Gen.186 (1999) 3-12.
[2] M.E. Dry, The Fischer–Tropsch process: 1950–2000. Catal. Today .71 (2002) 227-241.
[3] J.B. Butt, T. Lin, L.H. Schwartz, Iron alloy Fischer-Tropsch catalysts, VI. FeCo on ZSM-5, J. Catal.97 (1986)261-263.
[4] H. Schulz, H.L. Niederberger, M. Kneip, F. Weil, Synthesis Gas Conversion on Fischer-Tropsch Iron/HZSM5 Composite Catalysts, Stud. Surf. Sci Catal.61 (1991) 313-323.
[5] G. Calleja, A.D. Lucas, R.V. Grieken, Co/HZSM-5 catalyst for syngas conversion: influence of process variables, Fuel.74 (1995) 445-451.
[6] A.P. Steynberg, M.E. Dry, B.H. Havis,  B.B. Berman, Chapter 2 Fischer-Tropsch Reactors, Stud. Surf. Sci Catal.152 (2004) 64.
[7] Q.S. Liu, Z.X. Zhang, J.L. Zhou, Steady state and dynamic behavior of fixed bed catalytic reactor for Fischer-Tropsch synthesis. I. mathematical model and numerical method, J. Nat.Gas .Chem, 8 (1999) 137-180.
[8] Q.S. Liu,  Z.X. Zhang, , J.L. Zhou, Steady state and dynamic behavior of fixed bed catalytic reactor for Fischer-Tropsch synthesis. II. Steady state and dynamic simulation results, J.Nat.Gas .Chem, 8 (1999) 238-265.
[9] Y. Wang, Y. Xu, Y. Li, Y. Zhao, B. Zhang, Heterogeneous modeling for fixed-bed Fischer–Tropsch synthesis: Reactor model and its applications, Chem. Eng. Sci. 58 (2003) 867-875.
[10] M.R. Rahimpour, S.M. Jokar, Z. Jamshidnejad, A novel slurry bubble column membrane reactor concept forFischer–Tropsch synthesis in GTL technology, Chem. Eng. Res. Des. (2011) In Press.
[11] A. Nakhaei Pour, M.R. Housaindokht, S.F. Tayyari, J. Zarkesh, S.M Kamali Shahri, Water-gas-shift kinetic over nano-structured iron catalyst in FischereTropsch, J. Nat.Gas. Sci. Eng. 2(2010) 79-85.
[12] X.G. Li, D. X. Liuc, S.M Xu, H. Li, CFD simulation of hydrodynamics of valve tray, Chem. Eng. Process. 48 (2009) 145–151.
[13] S. Vashisth, K.D.P. Nigam, Prediction of flow profiles and interfacial phenomena for
two-phase flow in coiled tubes, Chem. Eng. Process. 48 (2009) 452–463.
[14] A.I. Stamou, Improving the hydraulic efficiency of water process tanks using CFD models, Chem. Eng. Process. 47 (2008) 1179–1189.
 [15] M. Rahimi, S.R. Shabanian, A.A. Alsairafi , Experimental and CFD studies on heat transfer and friction factor characteristics of a tube equipped with modified twisted tape inserts , Chem. Eng. Process. 48 (2009) 762–770.
 [16] M. Irani, R.B. Bouzarjomehri, M.R. Pishvaei, Impact of thermodynamic non-idealities and mass transfer on multi-phase hydrodynamics, Scientia Iranica 17 (2010) 55-64.
[17] M. Irani, A. Alizadehdakhel, A. Nakhaei Pour, N. Hoseini, M. Adinehnia , CFD modeling of hydrogen production using steam reforming of methane in monolith reactors: Surface or volume-base reaction model? Int. J. Hydrogen. Energy. 36 (2011) 15602-15610.
[18] B. Chalermsinsuwan, P. Kuchonthara, P. Piumsomboon, Effect of circulating fluidized bed reactor riser geometries on chemical reaction rates by using CFD simulations, Chem. Eng. Process. 48 (2009) 165–177.
[19] R. Krishna, J.M. Van Baten, Scaling up bubble column reactors with the aid of CFD, Chem. Eng. Res. Des. 79 (2001) 283-309.
[20] J.M. Van Baten, R. Krishna, Scale Effects on the Hydrodynamics of Bubble Columns Operating in the Heterogeneous Flow Regime, Chem. Eng. Res. Des. 82 (2004) 1043-1053.
[21] C.W. Jiang, Z.W. Zheng,  Y.P. Zhu, Z.H. Luo , Design of a two-stage fluidized bed reactor for preparation of diethyl oxalate from carbon monoxide, Chem. Eng. Res. Des. (2011) In press.
[22] G. Arzamendi,  P.M. Diéguez,  M. Montes  , J.A. Odriozola, E.F. Sousa-Aguiar,  L.M. Gandía,  Computational fluid dynamics study of heat transfer in a microchannel reactor for low-temperature Fischer–Tropsch synthesis, Chem. Eng J. 160 (2010) 915–922.
[23] M. Irani, A. Alizadehdakhel, A. Nakhaeipour, P. Prolx, A.Tavassoli , An investigation on the performance of a FTS fixed-bed reactor using CFD methods, Int. Commun. Heat. Mass. 38 (2011) 1119–1124.
[24] M. Irani, R.B. Bozorgmehry, M.R. Pishvaie, A. Tavasoli , Investigating the Effects of Mass Transfer and Mixture Non-Ideality on Multiphase Flow Hydrodynamics using CFD Methods, Iran. J. Chem. Eng. 29 (2010) 51-60.
[25] A. Nakhaei Pour, M.R. Housaindokht, S. F. Tayyari, J. Zarkesh,  Effect of nano-particle size on product distribution and kinetic parameters of Fe/Cu/La catalyst in Fischer-Tropsch synthesis, J. Nat.Gas. Chem. 19 (2010)107–116.
[26] E. A. Foumeny, H. A. Moallemi, C. Mcgreavy, J. A. A. Castro, Elucidation of mean voidage in packed beds, Can. J. Chem. Eng, 69 (2010) 1010-1015.
[27] Fluent, Incorporated: FLUENT 6 USER Manual, Lebanon (NH): Fluent Inc., 2001.
[28] B.E. Poling, J.M. Prausnitz, J.P. O’Connell, The properties of gases & liquids, 5th ed .McGraw-Hill, New York, 2000.
[29] S. Novak, R. J. Madon , and H. Suhl, Secondary effects in the Fischer-Tropsch synthesis, J. Catal. 77 (1982) 141.
 [30] B. Sarup and B.W. Wojciechowski, Studies of the Fischer-Tropsch synthesis on a cobalt catalyst i. evaluation of product distribution parameters from experimental data, Can. J. Chem. Eng. 66 (1988) 831.
[31] G.P. Van der Laan, A. A. C. M. Beenackers, Kinetics and Selectivity of the Fischer-Tropsch Synthesis: A Literature Review, Catalysis Reviews, CATAL. REV. SCI. ENG. 41(1999) 255–318.
[32] S. Krishnamoorthy, A. Li, E. Iglesia, Pathways for CO2 Formation and Conversion During Fischer–Tropsch Synthesis on Iron-Based Catalysts, Catal. Lett. 80 (2002) 77-86.