Feasibility Study of Using Waste Heat from Gas Pressure Reducing Stations for Water Desalination

Document Type : Original Article


1 Faculty of Engineering, Kharazmi University, Tehran, Iran

2 2Department of Mechanical Engineering, Alzahra University, Tehran, Iran


In recent years, recovering waste heat to reduce energy consumption and provide the energy needs has become a promising method to solve the energy crisis. In this study, the waste heat from gas pressure reducing stations is used to produce fresh water using a humidification-dehumidification desalination unit. Using Aspen HYSYS to model the proposed system, the effect of different parameters on the fresh water production rate is evaluated. The results show that optimum saline water and air flow rates are 0.165 kg/s and 0.2 kg/s, respectively, for a gas pressure reducing station by a capacity of 50,000 standard cubic meters per hour. It is also found that by decreasing the gas inlet pressure from 1000 psi to 400 psi, the fresh water production rate is decreases by about 52.2%. The increase of the fresh water production rate by increasing the capacity of the pressure reducing station from 10,000 to 50,000 standard cubic meters per hour is about 62%. Furthermore, the fresh production rate at gas pressure reducing station with 10,000 SCMH increases 4.4% by increasing the saline water temperature entering the humidifier from 40ºC to 80ºC.


Main Subjects

Article Title [Persian]

امکان‌سنجی استفاده از گرمای اتلافی ایستگاه کاهش فشار گاز برای شیرین سازی آب

Authors [Persian]

  • مریم کرمی 1
  • فریما علیخانی 2

1 دانشکده فنی مهندسی، دانشگاه خوارزمی، تهران، ایران

2 گروه مهندسی مکانیک، دانشگاه الزهرا، تهران، ایران

Abstract [Persian]

در سال‌های اخیر، بازیابی گرمای اتلافی برای کاهش مصرف انرژی و تأمین انرژی موردنیاز به یک روش امیدبخش برای حل بحران انرژی تبدیل‌شده است. در این مطالعه، از گرمای اتلافی ایستگاه‌های کاهش فشار گاز برای تولید آب شیرین با استفاده از یک واحد آب‌شیرین‌کن رطوبت زنی- رطوبت‌زدایی استفاده‌شده است. با مدل‌سازی سیستم پیشنهادی در نرم‌افزار اسپن هایسیس، تأثیر پارامترهای مختلف بر میزان تولید آب شیرین ارزیابی‌شده است. نتایج نشان می‌دهد که میزان بهینه دبی آب‌شور و جریان هوا برای یک ایستگاه کاهش فشار گاز با ظرفیت ۵۰،۰۰۰ مترمکعب استاندارد بر ساعت (SCMH)، به ترتیب ۰/۱۶۵ کیلوگرم بر ثانیه و ۰/۲ کیلوگرم بر ثانیه است. همچنین مشخص‌شده است که با کاهش فشار ورودی گاز از psi ۱۰۰۰ به psi ۴۰۰، میزان تولید آب شیرین حدود ۵۲/۲٪ کاهش می‌یابد. افزایش نرخ تولید آب شیرین با افزایش ظرفیت ایستگاه کاهش فشار از SCMH ۱۰،۰۰۰ به FGTG ۵۰،۰۰۰. حدود۲۶٪ است. علاوه بر این، میزان تولید آب شیرین در ایستگاه کاهش فشار گاز با SCMH ۱۰،۰۰۰ با افزایش دمای آب‌شور ورودی به رطوبت زن از  ℃۴۰  به ℃۸۰ حدود ۴/۴٪ افزایش می‌یابد.

Keywords [Persian]

  • ایستگاه کاهش فشار گاز
  • شیرین سازی آب
  • واحد رطوبت زنی-رطوبت زدایی
  • شبیه سازی عددی
  • اسپن هایسیس
Bayat, A., Abbasporsani, K., Heidari, F., Vosough, M., 2016. Thermodynamic analysis of gas preheater at Zanjan city gate station, Applied mechanics research 8(1), 27-32.
Deymi-Dashtebayaz, M., Dadpour, D., Khadem, J., 2021. Using the potential of energy losses in gas pressure reduction stations for producing power and FW. Desalination 497, 114763.
Dow, N., Gray, S., Li, J., Zhang, J., Ostarcevic, E., 2016. A. Liubinas, P. Atherton, G. Roeszler, A. Gibbs, M. Duke, Pilot trial of membrane distillation driven by low grade waste heat: Membrane fouling and energy assessment. Desalination 391, 30–42.
Elsaida, K., Taha Sayed, E., Yousef, B.A.A., Rabaia, M.K.H., Abdelkareem, M.A., Olabi, A.G., 2020. Recent progress on the utilization of waste heat for desalination: A review. Energy Conversion and Management 221, 113105.
Ghaebi, H., Farhang, B., Rostamzadeh, H., Parikhani, T., 2018. Energy, exergy, economic and environmental (4E) analysis of using city gate station (PRS) heater waste for power and hydrogen production: A comparative study. International Journal of Hydrogen Energy 43, 1855-1874.
He, W., Han, D., Zhu, W.P., Ji, C., 2018. Thermo-economic analysis of a water-heated humidification-dehumidification desalination system with waste heat recovery. Energy Conversion and Management 160, 182-190.
Karami, M., Noroozi, A., 2019. Application of Waste Heat Recovery Unit for PRS Heater, Journal of Gas Technology 4 (1), 16-23.
Lai, X., Long, R., Liu, Z., Liu, W., 2018. A hybrid system using direct contact membrane distillation for water production to harvest waste heat from the proton exchange membrane fuel cell. Energy 147, 578-586.
Lokare, O.R., Tavakkoli, S., Rodriguez, G., Khanna, V. Vidic, R.D., 2017. Integrating membrane distillation with waste heat from natural gas compressor stations for produced water treatment in Pennsylvania. Desalination 413, 144–53.
Naderi, M., Ahmadi, G., Zarringhalam, M., Akbari, O., Khalili, E., 2018a. Application of water reheating system for waste heat recovery in NG pressure reduction stations, with experimental verification. Energy 162, 1183-1192.
Naderi, M., Zargar, G., Khalili, E., 2018b. A Numerical Study on Using Air Cooler Heat Exchanger for Low Grade Energy Recovery from Exhaust Flue Gas in Natural Gas Pressure Reduction Stations, Iranian Journal of Oil & Gas Science and Technology 7 (1), 93-109.
Narayan, G.P., Sharqawy, M.H., Lienhard, V., Zubair, S.M., 2010. Thermodynamic analysis of humidification dehumidification desalination cycles. Desalin. Water Treat. 16 (1–3), 339–353.
Olabi, A.G., Elsaid, K., Rabaia, M.K.H., Askalany, A.A., Abdelkareem, M.A., 2020. Waste heat-driven desalination systems: Perspectiv. Energy 209, 118373.
Rastgar, S., Saedodin, S., 2013. Presenting a thermodynamic model to prevent the formation of gaseous hydrates in Natural gas pressure reducing station, 2nd National Iranian Conference on Gas Hydrate, Semnan, Iran.
Santosh, R., Kumaresan, G., Selvaraj, S., Arunkumar, T., Velraj, R., 2019. Investigation of humidification-dehumidification desalination system through waste heat recovery from household air conditioning unit. Desalination 467, 1-11.
Schwantes, R., Cipollina, A., Gross, F., Koschikowski, J., Pfeifle, D., Rolletschek, M., Subiel, V., 2013. Membrane distillation: Solar and waste heat driven demonstration plants for desalination. Desalination 323, 93–106.
Shafieian, A., Khiadan, M., 2020. A multipurpose desalination, cooling, and air-conditioning system powered by waste heat recovery from diesel exhaust fumes and cooling water. Case Studies in Thermal Engineering 21, 100702.
Shakib, S.E., Amidpour, M., Boghrati, M., Ghafurian, M.M., Esmaieli, A., 2021. New approaches to low production cost and low emissions through hybrid MED-TVC+RO desalination system coupled to a gas turbine cycle. Journal of Cleaner Production 295, 126402.
Sharshir, S., Peng, G., Yang, N., El-Samadony, M.O.A., Kabeel, A.E., 2016. A continuous desalination system using humidification–dehumidification and a solar still with an evacuated solar water heater. Applied Thermal Engineering 104, 734-742.
Sorgulu, F., Dincer, I., 2021. Development and assessment of a biomass-based cogeneration system with desalination. Applied Thermal Engineering 185, 116432.