A Review of Application of Nanotechnology in Wastewater Treatment in Oil, Gas and Petrochemical Industries

Document Type : Original Article

Authors

1 School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155/4563, Iran

2 Department of Chemical Engineering, Faculty of Petroleum and Petrochemical Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran

20.1001.1/jgt.2022.559752.1010

Abstract

The increase in population and the expansion of industries have led to the pollution and reduction of many natural resources, including water resources. Widespread use of these resources in domestic, agricultural and industrial uses has led to the entry of pollutants and limited water resources. One of these industries is the oil and gas industry and related sectors, such as petrochemicals, which introduce many pollutants such as heavy metals, aromatics, etc. into water sources. Therefore, it is necessary to pay attention to the correct use of these resources and strategies for treatment and reuse of wastewater. Various methods are used for wastewater treatment such as flocculation, adsorption, filtration, etc., but each of them has some limitations such as low efficiency or high cost. The use of nanotechnology is one of the solutions that has recently been considered. This method improves performance by reducing the dimension of material to nanometers. There are different types of nanomaterials that due to their unique properties such as larger surface area, ability to work at low concentrations, etc., have great potential for treating contaminated water very effectively. Studies show they can be used in various forms such as nano-adsorbents, nano-membranes, nano-filters and nano-photocatalysts to remove or reduce contaminants specially from oil, gas and petrochemical wastewater. In this review, the importance and application of nanotechnology has been discussed in wastewater treatment in oil, gas and petrochemical.

Keywords

Main Subjects

Article Title [Persian]

مروری بر کاربرد فناوری نانو در تصفیه آب و پساب صنایع نفت، گاز و پتروشیمی

Authors [Persian]

  • محمدرضا بسکابادی 1
  • زهرا رباط جزی 2
  • امید توکلی 1

1 دانشکده مهندسی شیمی، دانشکدگان فنی، دانشگاه تهران، 4563/11155، تهران، ایران

2 گروه مهندسی شیمی، دانشکده نفت و پتروشیمی، دانشگاه حکیم سبزواری، سبزوار 9617976487، ایران

Abstract [Persian]

افزایش جمعیت و گسترش صنایع منجر به آلودگی و کاهش بسیاری از منابع طبیعی از جمله منابع آب شده است. استفاده گسترده از این منابع در مصارف خانگی، کشاورزی و صنعتی منجر به ورود آلاینده‌ها و محدودیت منابع آبی شده است. یکی از این صنایع، صنعت نفت و گاز و بخش‌­های مرتبط با آن مانند پتروشیمی است که آلاینده‌­های زیادی مانند فلزات سنگین، آروماتیک و غیره را وارد منابع آبی می‌­کند. بنابراین توجه به استفاده صحیح از این منابع و راهکارهای تصفیه و استفاده مجدد از پساب ضروری است. روش­‌های مختلفی برای تصفیه پساب از جمله لخته سازی، جذب سطحی، فیلتراسیون و غیره استفاده می­‌شود که هر کدام دارای محدودیت­‌هایی مانند راندمان کم و یا هزینه بالا هستند. استفاده از فناوری نانو یکی از راهکارهایی است که اخیراً مورد توجه قرارگرفته است. این روش با کاهش ابعاد مواد به نانومتر، عملکرد را بهبود می­بخشد. انواع مختلفی از نانومواد وجود دارد که به دلیل خواص منحصر به فرد خود مانند سطح تماس بزرگ‌تر، توانایی کار در غلظت‌­های پایین و غیره، پتانسیل بالایی برای تصفیه مؤثر آب­‌های آلوده دارند. مطالعات نشان می‌دهد که می‌توان از آن‌ها در اشکال مختلف مانند نانوجاذب‌ها، نانوغشاها، نانوفیلترها و نانوفوتوکاتالیست‌ها برای حذف یا کاهش آلاینده‌ها به‌ویژه از پساب نفت، گاز و پتروشیمی استفاده کرد. در این بررسی به اهمیت و کاربرد فناوری نانو در تصفیه پساب نفت، گاز و پتروشیمی می‌­پردازیم.

Keywords [Persian]

  • فناوری نانو
  • صنایع نفت و گاز
  • تصفیه پساب
  • نانوغشا
  • نانوجاذب
  • نانوفوتوکاتالیست
Abadikhah, H., Zokaee Ashtiani, F., & Fouladitajar, A. (2015). Nanofiltration of oily wastewater containing salt; experimental studies and optimization using response surface methodology. Desalination and Water Treatment, 56(11), 2783-2796.
Abdel-Fatah, M. A. (2018). Nanofiltration systems and applications in wastewater treatment. Ain Shams Engineering Journal, 9(4), 3077-3092.
Abuhasel, K., Kchaou, M., Alquraish, M., Munusamy, Y., & Jeng, Y. T. (2021). Oily wastewater treatment: Overview of conventional and modern methods, challenges, and future opportunities. Water, 13(7), 980.
Adham, S., Hussain, A., Minier-Matar, J., Janson, A., & Sharma, R. (2018). Membrane applications and opportunities for water management in the oil & gas industry. Desalination, 440, 2-17.
Aghigh, A., Alizadeh, V., Wong, H. Y., Islam, M. S., Amin, N., & Zaman, M. (2015). Recent advances in utilization of graphene for filtration and desalination of water: A review. Desalination, 365, 389-397.
Ahmad, T., Guria, C., & Mandal, A. (2020). A review of oily wastewater treatment using ultrafiltration membrane: A parametric study to enhance the membrane performance. Journal of Water Process Engineering, 36, 101289.
Ahmed, S. N., & Haider, W. (2018). Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology, 29(34), 342001.
Al-Sabahi, J., Bora, T., Claereboudt, M., Al-Abri, M., & Dutta, J. (2018). Visible light photocatalytic degradation of HPAM polymer in oil produced water using supported zinc oxide nanorods. Chemical Engineering Journal, 351, 56-64.
Ali, Z., Al Sunbul, Y., Pacheco, F., Ogieglo, W., Wang, Y., Genduso, G., & Pinnau, I. (2019). Defect-free highly selective polyamide thin-film composite membranes for desalination and boron removal. Journal of Membrane Science, 578, 85-94.
Aliyu, U. M., Rathilal, S., & Isa, Y. M. (2018). Membrane desalination technologies in water treatment: A review. Water Practice & Technology, 13(4), 738-752.
Alsaba, M. T., Al Dushaishi, M. F., & Abbas, A. K. (2020). A comprehensive review of nanoparticles applications in the oil and gas industry. Journal of Petroleum Exploration and Production Technology, 10(4), 1389-1399.
Basu, T., & Ghosh, U. C. (2013). Nano-structured iron (III)–cerium (IV) mixed oxide: Synthesis, characterization and arsenic sorption kinetics in the presence of co-existing ions aiming to apply for high arsenic groundwater treatment. Applied Surface Science, 283, 471-481.
Cabrera, S. M., Winnubst, L., Richter, H., Voigt, I., & Nijmeijer, A. (2021). Industrial application of ceramic nanofiltration membranes for water treatment in oil sands mines. Separation and Purification Technology, 256, 117821.
Cai, Y., Chen, D., Li, N., Xu, Q., Li, H., He, J., & Lu, J. (2020). A Self‐Cleaning Heterostructured Membrane for Efficient Oil‐in‐Water Emulsion Separation with Stable Flux. Advanced Materials, 32(25), 2001265.
Chen, X., Huang, G., An, C., Feng, R., Wu, Y., & Huang, C. (2022). Superwetting polyethersulfone membrane functionalized with ZrO2 nanoparticles for polycyclic aromatic hydrocarbon removal. Journal of Materials Science & Technology, 98, 14-25.
Cheriyamundath, S., & Vavilala, S. L. (2021). Nanotechnology‐based wastewater treatment. Water and Environment Journal, 35(1), 123-132.
Cui, H., Gu, X., Lu, S., Fu, X., Zhang, X., Fu, G. Y., Qiu, Z., & Sui, Q. (2017). Degradation of ethylbenzene in aqueous solution by sodium percarbonate activated with EDDS–Fe (III) complex. Chemical Engineering Journal, 309, 80-88.
Da, X., Chen, X., Sun, B., Wen, J., Qiu, M., & Fan, Y. (2016). Preparation of zirconia nanofiltration membranes through an aqueous sol–gel process modified by glycerol for the treatment of wastewater with high salinity. Journal of Membrane Science, 504, 29-39.
Darabdhara, G., & Das, M. R. (2019). Dual responsive magnetic Au@ Ni nanostructures loaded reduced graphene oxide sheets for colorimetric detection and photocatalytic degradation of toxic phenolic compounds. Journal of Hazardous Materials, 368, 365-377.
de Tuesta, J. L. D., Silva, A. M., Faria, J. L., & Gomes, H. T. (2020). Adsorption of Sudan-IV contained in oily wastewater on lipophilic activated carbons: kinetic and isotherm modelling. Environmental Science and Pollution Research, 27(17), 20770-20785.
Doshi, B., Repo, E., Heiskanen, J. P., Sirviö, J. A., & Sillanpää, M. (2018). Sodium salt of oleoyl carboxymethyl chitosan: A sustainable adsorbent in the oil spill treatment. Journal of Cleaner Production, 170, 339-350.
Fang, X., Li, J., Ren, B., Huang, Y., Wang, D., Liao, Z., Li, Q., Wang, L., & Dionysiou, D. D. (2019). Polymeric ultrafiltration membrane with in situ formed nano-silver within the inner pores for simultaneous separation and catalysis. Journal of Membrane Science, 579, 190-198.
Folio, E., Ogunsola, O., Melchert, E., & Frye, E. (2018). Produced water treatment R&D: developing advanced, cost-effective treatment technologies. SPE/AAPG/SEG Unconventional Resources Technology Conference,
Fujisawa, J.-i., Eda, T., & Hanaya, M. (2017). Comparative study of conduction-band and valence-band edges of TiO2, SrTiO3, and BaTiO3 by ionization potential measurements. Chemical Physics Letters, 685, 23-26.
Ghasemi, Z., Younesi, H., & Zinatizadeh, A. A. (2016). Preparation, characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum refinery wastewater: Optimization of process parameters by response surface methodology. Chemosphere, 159, 552-564.
Gómez-Pastora, J., Dominguez, S., Bringas, E., Rivero, M. J., Ortiz, I., & Dionysiou, D. D. (2017). Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chemical Engineering Journal, 310, 407-427.
Han, M., Zhang, J., Chu, W., Chen, J., & Zhou, G. (2019). Research progress and prospects of marine oily wastewater treatment: A review. Water, 11(12), 2517.
Hassan, A. A., & Al-zobai, K. M. M. (2019). Chemical oxidation for oil separation from oilfield produced water under UV irradiation using Titanium dioxide as a nano-photocatalyst by batch and continuous techniques. International Journal of Chemical Engineering, 2019.
He, L., Wang, L., Zhu, H., Wang, Z., Zhang, L., Yang, L., Dai, Y., Mo, H., Zhang, J., & Shen, J. (2021). A reusable Fe3O4/GO-COOH nanoadsorbent for Ca2+ and Cu2+ removal from oilfield wastewater. Chemical Engineering Research and Design, 166, 248-258.
He, L., Yang, L., Zhang, L., Wang, Z., Cheng, H., Wang, X., Lv, J., Zhang, J., Mo, H., & Shen, J. (2021). Removal of Ca2+ and Mg2+ from oilfield wastewater using reusable PEG/Fe3O4/GO-NH2 nanoadsorbents and its efficiency for oil recovery. Journal of Environmental Chemical Engineering, 9(1), 104653.
Hedayatipour, M., Jaafarzadeh, N., & Ahmadmoazzam, M. (2017). Removal optimization of heavy metals from effluent of sludge dewatering process in oil and gas well drilling by nanofiltration. Journal of environmental management, 203, 151-156.
Hu, X., Yu, Y., Zhou, J., Wang, Y., Liang, J., Zhang, X., Chang, Q., & Song, L. (2015). The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane. Journal of Membrane Science, 476, 200-204.
Imran, M., Islam, A. U., Tariq, M. A., Siddique, M. H., Shah, N. S., Khan, Z. U. H., Amjad, M., Din, S. U., Shah, G. M., & Naeem, M. A. (2019). Synthesis of magnetite-based nanocomposites for effective removal of brilliant green dye from wastewater. Environmental Science and Pollution Research, 26(24), 24489-24502.
Jafarinejad, S., & Esfahani, M. R. (2021). A Review on the Nanofiltration Process for Treating Wastewaters from the Petroleum Industry. Separations, 8(11), 206.
Johnston, J. E., Lim, E., & Roh, H. (2019). Impact of upstream oil extraction and environmental public health: A review of the evidence. Science of the Total Environment, 657, 187-199.
Kefeni, K. K., & Mamba, B. B. (2020). Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment. Sustainable Materials and Technologies, 23, e00140.
Khaksar, A. M., Nazif, S., Taebi, A., & Shahghasemi, E. (2017). Treatment of phenol in petrochemical wastewater considering turbidity factor by backlight cascade photocatalytic reactor. Journal of photochemistry and photobiology A: chemistry, 348, 161-167.
Khamforoush, M., Pirouzram, O., & Hatami, T. (2015). The evaluation of thin film composite membrane composed of an electrospun polyacrylonitrile nanofibrous mid-layer for separating oil–water mixture. Desalination, 359, 14-21.
Khan, N. A., Khan, S. U., Ahmed, S., Farooqi, I. H., Dhingra, A., Hussain, A., & Changani, F. (2019). Applications of nanotechnology in water and wastewater treatment: A review. Asian Journal of Water, Environment and Pollution, 16(4), 81-86.
Kharisov, B. I., Dias, H. R., & Kharissova, O. V. (2014). Nanotechnology-based remediation of petroleum impurities from water. Journal of Petroleum Science and Engineering, 122, 705-718.
Khoshkerdar, I., & Esmaeili, H. (2019). Adsorption of Cr (III) and Cd (II) ions using mesoporous cobalt-ferrite nanocomposite from synthetic wastewater. Acta Chimica Slovenica, 66(1), 208-216.
Ko, S., Prigiobbe, V., Huh, C., Bryant, S., Bennetzen, M. V., & Mogensen, K. (2014). Accelerated oil droplet separation from produced water using magnetic nanoparticles. SPE Annual Technical Conference and Exhibition,
Kumari, P., Alam, M., & Siddiqi, W. A. (2019). Usage of nanoparticles as adsorbents for waste water treatment: An emerging trend. Sustainable Materials and Technologies, 22, e00128.
Li, C., Deng, W., Gao, C., Xiang, X., Feng, X., Batchelor, B., & Li, Y. (2019). Membrane distillation coupled with a novel two-stage pretreatment process for petrochemical wastewater treatment and reuse. Separation and Purification Technology, 224, 23-32.
Liang, H., & Esmaeili, H. (2021). Application of nanomaterials for demulsification of oily wastewater: A review study. Environmental Technology & Innovation, 101498.
Liu, X., Ruan, W., Wang, W., Zhang, X., Liu, Y., & Liu, J. (2021). The Perspective and Challenge of Nanomaterials in Oil and Gas Wastewater Treatment. Molecules, 26(13), 3945.
Lü, T., Zhang, S., Qi, D., Zhang, D., & Zhao, H. (2016). Thermosensitive poly (N-isopropylacrylamide)-grafted magnetic nanoparticles for efficient treatment of emulsified oily wastewater. Journal of Alloys and Compounds, 688, 513-520.
Ma, W., Zhang, Q., Hua, D., Xiong, R., Zhao, J., Rao, W., Huang, S., Zhan, X., Chen, F., & Huang, C. (2016). Electrospun fibers for oil–water separation. Rsc Advances, 6(16), 12868-12884.
Maszenan, A., Liu, Y., & Ng, W. J. (2011). Bioremediation of wastewaters with recalcitrant organic compounds and metals by aerobic granules. Biotechnology Advances, 29(1), 111-123.
Mulyanti, R., & Susanto, H. (2018). Wastewater treatment by nanofiltration membranes. IOP Conference Series: Earth and Environmental Science,
Mustapha, S., Ndamitso, M., Abdulkareem, A., Tijani, J., Shuaib, D., Ajala, A., & Mohammed, A. (2020). Application of TiO2 and ZnO nanoparticles immobilized on clay in wastewater treatment: a review. Applied Water Science, 10(1), 1-36.
Naseem, S., Wu, C.-M., Xu, T.-Z., Lai, C.-C., & Rwei, S.-P. (2018). Oil-water separation of electrospun cellulose triacetate nanofiber membranes modified by electrophoretically deposited TiO2/graphene oxide. Polymers, 10(7), 746.
Nezhad, J. K., Bordbar, B., Abbasi, M., Izadpanah, A., & Khosravi, A. (2022). Application of Nanofiltration and Reverse Osmosis in Wastewater Treatment Containing Ethylene Glycol from South Pars Gas Complex Wastewater. Journal of Applied Membrane Science & Technology, 26(1), 107-120.
Ng, K. H. (2021). Adoption of TiO2-photocatalysis for palm oil mill effluent (POME) treatment: Strengths, weaknesses, opportunities, threats (SWOT) and its practicality against traditional treatment in Malaysia. Chemosphere, 270, 129378.
Ni, L., Li, Y., Zhang, C., Li, L., Zhang, W., & Wang, D. (2016). Novel floating photocatalysts based on polyurethane composite foams modified with silver/titanium dioxide/graphene ternary nanoparticles for the visible‐light‐mediated remediation of diesel‐polluted surface water. Journal of Applied Polymer Science, 133(19).
Noamani, S., Niroomand, S., Rastgar, M., & Sadrzadeh, M. (2019). Carbon-based polymer nanocomposite membranes for oily wastewater treatment. NPJ Clean Water, 2(1), 1-14.
Obotey Ezugbe, E., & Rathilal, S. (2020). Membrane technologies in wastewater treatment: a review. Membranes, 10(5), 89.
Patiño-Ruiz, D. A., De Ávila, G., Alarcón-Suesca, C., González-Delgado, A. n. D., & Herrera, A. (2020). Ionic cross-linking fabrication of chitosan-based beads modified with FeO and TiO2 nanoparticles: Adsorption mechanism toward naphthalene removal in seawater from cartagena bay area. ACS omega, 5(41), 26463-26475.
Peng, B., Yao, Z., Wang, X., Crombeen, M., Sweeney, D. G., & Tam, K. C. (2020). Cellulose-based materials in wastewater treatment of petroleum industry. Green Energy & Environment, 5(1), 37-49.
Queiroz, R. N., Prediger, P., & Vieira, M. G. A. (2022). Adsorption of polycyclic aromatic hydrocarbons from wastewater using graphene-based nanomaterials synthesized by conventional chemistry and green synthesis: A critical review. Journal of Hazardous Materials, 422, 126904.
Rahmani, Z., Shafiei-Alavijeh, M., Kazemi, A., & Rashidi, A. M. (2018). Synthesis of MIL-101@ nanoporous graphene composites as hydrophobic adsorbents for oil removal. Journal of the Taiwan Institute of Chemical Engineers, 91, 597-608.
Ren, G., Han, H., Wang, Y., Liu, S., Zhao, J., Meng, X., & Li, Z. (2021). Recent advances of photocatalytic application in water treatment: A review. Nanomaterials, 11(7), 1804.
Rivero-Huguet, M., & Marshall, W. D. (2009). Reduction of hexavalent chromium mediated by micron-and nano-scale zero-valent metallic particles. Journal of Environmental Monitoring, 11(5), 1072-1079.
Saadati, J., & Pakizeh, M. (2017). Separation of oil/water emulsion using a new PSf/pebax/F-MWCNT nanocomposite membrane. Journal of the Taiwan Institute of Chemical Engineers, 71, 265-276.
Sabouri, M. R., Javanbakht, V., Ghotbabadi, D. J., & Mehravar, M. (2019). Oily wastewater treatment by a magnetic superoleophilic nanocomposite foam. Process Safety and Environmental Protection, 126, 182-192.
Saien, J., & Nejati, H. (2007). Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions. Journal of Hazardous Materials, 148(1-2), 491-495.
Salahi, A., Noshadi, I., Badrnezhad, R., Kanjilal, B., & Mohammadi, T. (2013). Nano-porous membrane process for oily wastewater treatment: optimization using response surface methodology. Journal of Environmental Chemical Engineering, 1(3), 218-225.
Sayed, K., Baloo, L., & Sharma, N. K. (2021). Bioremediation of total petroleum hydrocarbons (TPH) by bioaugmentation and biostimulation in water with floating oil spill containment booms as bioreactor basin. International Journal of Environmental Research and Public Health, 18(5), 2226.
Shavisi, Y., Sharifnia, S., Hosseini, S., & Khadivi, M. (2014). Application of TiO2/perlite photocatalysis for degradation of ammonia in wastewater. Journal of Industrial and Engineering Chemistry, 20(1), 278-283.
Shavisi, Y., Sharifnia, S., Zendehzaban, M., Mirghavami, M. L., & Kakehazar, S. (2014). Application of solar light for degradation of ammonia in petrochemical wastewater by a floating TiO2/LECA photocatalyst. Journal of Industrial and Engineering Chemistry, 20(5), 2806-2813.
Shirzad Taghanaki, N., Keramati, N., & Mehdipour Ghazi, M. (2021). Photocatalytic Degradation of Ethylbenzene by Nano Photocatalyst in Aerogel form Based on Titania. Iran. J. Chem. Chem. Eng. Research Article Vol, 40(2).
Shon, H., Phuntsho, S., Chaudhary, D., Vigneswaran, S., & Cho, J. (2013). Nanofiltration for water and wastewater treatment–a mini review. Drinking Water Engineering and Science, 6(1), 47-53.
Simonsen, G., Strand, M., & Øye, G. (2018). Potential applications of magnetic nanoparticles within separation in the petroleum industry. Journal of Petroleum Science and Engineering, 165, 488-495.
Sun, X., Wang, C., Li, Y., Wang, W., & Wei, J. (2015). Treatment of phenolic wastewater by combined UF and NF/RO processes. Desalination, 355, 68-74.
Tul Muntha, S., Kausar, A., & Siddiq, M. (2017). Advances in polymeric nanofiltration membrane: A review. Polymer-Plastics Technology and Engineering, 56(8), 841-856.
Varjani, S. J., Gnansounou, E., & Pandey, A. (2017). Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere, 188, 280-291.
Velayi, E., & Norouzbeigi, R. (2020). A mesh membrane coated with dual-scale superhydrophobic nano zinc oxide: Efficient oil-water separation. Surface and Coatings Technology, 385, 125394.
Vlaev, L., Petkov, P., Dimitrov, A., & Genieva, S. (2011). Cleanup of water polluted with crude oil or diesel fuel using rice husks ash. Journal of the Taiwan Institute of Chemical Engineers, 42(6), 957-964.
Wang, X., Wang, J., Zhang, J., Louangsouphom, B., Song, J., Wang, X., & Zhao, J. (2017). Synthesis of expanded graphite C/C composites (EGC) based Ni-N-TiO2 floating photocatalysts for in situ adsorption synergistic photocatalytic degradation of diesel oil. Journal of photochemistry and photobiology A: chemistry, 347, 105-115.
Yang, Z., Zhou, Y., Feng, Z., Rui, X., Zhang, T., & Zhang, Z. (2019). A review on reverse osmosis and nanofiltration membranes for water purification. Polymers, 11(8), 1252.
Yurekli, Y. (2016). Removal of heavy metals in wastewater by using zeolite nano-particles impregnated polysulfone membranes. Journal of Hazardous Materials, 309, 53-64.
Zafra, G., Moreno-Montaño, A., Absalón, Á. E., & Cortés-Espinosa, D. V. (2015). Degradation of polycyclic aromatic hydrocarbons in soil by a tolerant strain of Trichoderma asperellum. Environmental Science and Pollution Research, 22(2), 1034-1042.
Zhang, T., Xiao, C., Zhao, J., Liu, X., Ji, D., & Xu, H. (2021). One-step preparation of tubular nanofibers and micro/nanospheres covered membrane with 3D micro/nano structure for highly efficient emulsified oil/water separation. Journal of the Taiwan Institute of Chemical Engineers.