A Comprehensive Review on Advantages and Issues of Nanotechnology in the Oxidative Desulfurization Method for the Production of Ultra-Clean Fuels

Document Type : Review Article

Authors

1 M.Sc., Department of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, P.O. Box 98164-161, Zahedan, Iran

2 Assistant Professor, Department of chemical engineering, Faculty of engineering, University of Sistan and Baluchestan, P.O. Box 98164-161, Zahedan, Iran

20.1001.1/jgt.2023.1974394.1021

Abstract

Today, producing clean fuel oil is one of the major challenges in the world. One of the factors that causes environmental pollution is the sulfur compounds in crude oil. In today's world, there are strict rules for reducing the amount of sulfur in fuel. There are several ways to remove sulfur compounds from fuels, such as hydrodesulfurization (HDS), extractive distillation, biodesulfurization, adsorption desulfurization, and oxidative desulfurization (ODS). Some refractory sulfur compounds that are not removed from the fuel oil by the HDS can be easily removed by oxidation method. Nowadays, the ODS method is known as a complement to the HDS method. In the oxidation method, sulfur compounds are converted to the corresponding sulfonates by catalysts and oxidants and then separated from the feed by polar solutions or adsorbents. Various researches have been done on the Catalysts and oxidants of the ODS method. In this study, a comprehensive review has been carried out on the application of nanotechnology in the oxidative desulfurization method. Based on previous researches and available articles, nanocatalysts used in the oxidation process can be classified into five groups; polyoxometalates, transition metal oxide, carbon materials, ionic liquids and metal-organic frameworks (MOF). Also, different nanocatalysts and oxidants and optimal conditions to achieve the highest conversion percentage for the removal of sulfur compounds were investigated.

Keywords

Main Subjects

Article Title [Persian]

مروری جامع بر مزایا و مسائل نانوتکنولوژی در روش گوگردزدایی اکسایشی برای تولید سوخت‌های فوق تمیز

Authors [Persian]

  • زهرا مباشری 1
  • سید حسین زهدی فسائی 2

1 دانشجوی کارشناسی ارشد، گروه مهندسی شیمی، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان، ایران، صندوق پستی ۹۸۱۵۵-۱۶۱

2 استادیار، گروه مهندسی شیمی، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان، ایران، صندوق پستی ۹۸۱۵۵-۱۶۱

Abstract [Persian]

امروزه تولید سوخت پاک یکی از چالش‌های بزرگ در جهان است. یکی از عواملی که باعث آلودگی محیط‌زیست می‌شود، ترکیبات گوگردی موجود در نفت خام است. در دنیای امروز قوانین سخت‌گیرانه‌ای برای کاهش میزان گوگرد در سوخت وجود دارد. روش‌های مختلفی برای حذف ترکیبات گوگرد از سوخت‌ها وجود دارد، مانند گوگردزدایی هیدروژنی (HDS)، تقطیر استخراجی، گوگردزدایی زیستی، گوگردزدایی جذبی و گوگردزدایی اکسایشی (ODS). برخی از ترکیبات گوگردی که توسط روش گوگردزدایی هیدروژنی از سوخت حذف نمی‌شوند را می‌توان به‌راحتی با روش اکسیداسیون حذف کرد. امروزه روش گوگردزدایی اکسایشی به‌عنوان مکمل روش گوگردزدایی هیدروژنی شناخته می‌شود. در روش گوگردزدایی اکسایشی، ترکیبات گوگردی توسط کاتالیزورها و اکسیدکننده‌ها به سولفونات‌های مربوطه تبدیل می‌شوند و سپس توسط محلول‌ها یا جاذب‌های قطبی از خوراک جدا می‌شوند. تحقیقات مختلفی بر روی کاتالیزورها و اکسیدکننده‌های روش گوگردزدایی اکسایشی انجام شده است. در این مطالعه مروری جامع بر روی کاربرد نانوتکنولوژی در روش گوگردزدایی اکسایشی انجام شده است. بر اساس تحقیقات قبلی و مقالات موجود، نانوکاتالیست‌های مورد استفاده در فرآیند اکسیداسیون را می‌توان به پنج گروه طبقه‌بندی کرد: پلی اکسومتالات‌ها، اکسید فلزات واسطه، مواد کربنی، مایعات یونی و چارچوب‌های فلزی-آلی (MOF). همچنین نانوکاتالیست‌ها و اکسیدکننده‌های مختلف و شرایط بهینه برای دستیابی به بالاترین درصد تبدیل برای حذف ترکیبات گوگردی مورد بررسی قرار گرفت.

Keywords [Persian]

  • نانوکاتالیست
  • گوگردزدایی اکسایشی
  • نفت کوره
Bazyari, A., Khodadadi, A.A., Mamaghani, A.H., Beheshtian, J., Thompson, L.T., Mortazavi, Y., 2016. Microporous titania–silica nanocomposite catalyst-adsorbent for ultra-deep oxidative desulfurization. Applied Catalysis B: Environmental, vol. 180, p .65-77.
Jarullah, A.T., Aldulaimi, S.K., Al-Tabbakh, B.A., Mujtaba, I.M., 2020. A new synthetic composite nano-catalyst achieving an environmentally Friendly fuel by batch oxidative desulfurization. Chemical Engineering Research and Design, vol. 160, p. 405-416.
Stanislaus, A., Marafi, A., Rana, M.S., 2010. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catalysis today, vol. 153, p .1-68.
Saha, B., Kumar, S., Sengupta, S., 2019. Green synthesis of nano silver on TiO2 catalyst for application in oxidation of thiophene. Chemical Engineering Science, vol. 199, p .332-341.
Betiha, M.A., Rabie, A.M., Ahmed, H.S., Abdelrahman, A.A., El-Shahat, M.F., 2018. Oxidative desulfurization using graphene and its composites for fuel containing thiophene and its derivatives: An update review. Egyptian journal of petroleum, vol. 27, p .715-730.
Wang, C., Li, A., Xu, J., Wen, J., Zhang, H., Zhang, L., 2019. Preparation of WO3/CNT catalysts in presence of ionic liquid [C16mim] Cl and catalytic efficiency in oxidative desulfurization. Journal of Chemical Technology & Biotechnology, vol. 94, p .3403-3412.
Yang, C., Zhao, K., Cheng, Y., Zeng, G., Zhang, M., Shao, J., Lu, L., 2016. Catalytic oxidative desulfurization of BT and DBT from n-octane using cyclohexanone peroxide and catalyst of molybdenum supported on 4A molecular sieve. Separation and Purification Technology, vol. 163, p .153-161.
Dai, Y., Qi, Y., Zhao, D., Zhang, H., 2008. An oxidative desulfurization method using ultrasound/Fenton's reagent for obtaining low and/or ultra-low sulfur diesel fuel. Fuel processing technology, vol. 89, p .927-932.
Ahmed, G.S., Jarullah, A.T., Al-Tabbakh, B.A., Mujtaba, I.M., 2020. Design of an environmentally friendly reactor for naphtha oxidative desulfurization by air employing a new synthetic nano-catalyst based on experiments and modelling. Journal of cleaner production, vol. 257, p. 120436.
Azimzadeh, H., Akbari, A., Omidkhah, M., 2017. Oxidation desulfurization of dibenzothiophene with ionized liquid catalyst based on gamma alumina base, Iranian Chemical Engineering Journal, vol. 16, p. 92.
Soleimani, H., Meftahi, M., Nikfarjam, R., 2020. MOFs as a new generation of heterogeneous catalysts and study of the catalytic effect of these compounds on the oxidation of alkanes, alcohols and organic sulfides,1st national conference of future of engineering and trchnology.
He, J., Wu, Y., Wu, P., Lu, L., Deng, C., Ji, H., He, M., Zhu, W., Li, H.M., 2020. Synergistic catalysis of the PtCu alloy on ultrathin BN nanosheets for accelerated oxidative desulfurization. ACS Sustainable Chemistry & Engineering, vol. 8, p .2032-2039.
CamposMartin, J.M., CapelSanchez, M.D.C., PerezPresas, P., Fierro, J.L.G., 2010. Oxidative processes of desulfurization of liquid fuels. Journal of Chemical Technology & Biotechnology, vol. 85, p .879-890.
Kalantari, K., Kalbasi, M., Sohrabi, M. and Royaee, S.J., 2016. Synthesis and characterization of N-doped TiO2 nanoparticles and their application in photocatalytic oxidation of dibenzothiophene under visible light. Ceramics International, vol. 42, p .14834-14842.
Chen, L., Hu, Z.P., Ren, J.T., Wang, Z., Yuan, Z.Y., 2021. Efficient oxidative desulfurization over highly dispersed molybdenum oxides supported on mesoporous titanium phosphonates. Microporous and Mesoporous Materials, vol. 315, p. 110921.
Li, L., Zhang, J., Shen, C., Wang, Y., Luo, G., 2016. Oxidative desulfurization of model fuels with pure nano-TiO2 as catalyst directly without UV irradiation. Fuel, vol. 167, p. 9-16.
Li, L., Zhang, J., Shen, C., Wang, Y., Luo, G., 2016. Oxidative desulfurization of model fuels with pure nano-TiO2 as catalyst directly without UV irradiation. Fuel, vol. 167, p. 9-16.
Balula. S., 2014. Novel polyoxometalate silica nano-sized spheres: efficient catalysts for olefin oxidation and the deep desulfurization process. Dalton Trans., vol. 43, p. 9518–9528.
Xu, L., Wang, Y., Xu, T., Liu, S., Tong, J., Chu, R., Liu, B., 2018. Exfoliating Polyoxometalate‐Encapsulating Metal‐Organic Framework into Two‐Dimensional Nanosheets for Superior Oxidative Desulfurization. ChemCatChem, vol. 10, p. 5386-5390.
Rezvani, M. A., Rahmani, P., 2019. Synthesis and characterization of new nanosphere hybrid nanocomposite polyoxometalate@ceramic@polyaniline as a heterogeneous catalyst for oxidative desulfurization of real fuel. Advanced Powder Technology, vol. 30, p. 3214-3223.
Chen, M., Cui, J., Wang, Y., Wang, C., Li, Y., Fan, C., Tian, M., Xu, M., Yang, W., 2020. Amine modified nano-sized hierarchical hollow system for highly effective and stable oxidative-adsorptive desulfurization. Fuel, vol. 266, p. 116960.
Ghahramaninezhad, M., Pakdel, F., Niknam Shahrak, M., 2019. Boosting oxidative desulfurization of model fuel by POM-grafting ZIF-8 as a novel and efficient catalyst. Polyhedron, vol. 170, p. 364-372.
Haghighi, M., Gooneh-Farahani, S., 2020. Insights to the oxidative desulfurization process of fossil fuels over organic and inorganic heterogeneous catalysts: advantages and issues. Environ Sci Pollut Res, vol. 27, p. 39923–39945.
Rezvani, M.A., Oghoulbeyk, Z.N., Khandan, S., Mazzei, H.G., 2019. Synthesis and characterization of new nano organic-inorganic hybrid (TBA)4PW11Fe@TiO2@PVA as a promising phase-transfer catalyst for oxidative desulfurization of real fuel, Polyhedron poly, p. 14219.
Ali Rezvani, M., Noori Oghoulbeyk, Z., Khandan, S., Gabriel Mazzei, H., 2020. Synthesis and characterization of new nano organic-inorganic hybrid (TBA)4PW11Fe@TiO2@PVA as a promising phase-transfer catalyst for oxidative desulfurization of real fuel. Polyhedron, vol. 177, p. 114291.
 Hossain, M.N.; Park, H.C.; Choi, H.S., 2019. A Comprehensive Review on Catalytic Oxidative Desulfurization of Liquid Fuel Oil. Catalysts, vol. 9, p. 229.
Zhao, N., Li, S., Wang, J., Zhang, R., Gao, R., Zhao, J., Wang, J., 2015. Synthesis and application of different phthalocyanine molecular sieve catalyst for oxidative desulfurization. Journal of Solid State Chemistry, vol. 225, p. 347-353.
Mohammadi M, N., Pourkhalil, M., Rashidi, A., & ZareNezhad, B., 2014. Synthesis, characterization and operation of a functionalized multi-walled CNT supported MnOx nanocatalyst for deep oxidative desulfurization of sour petroleum fractions. Journal of Industrial and Engineering Chemistry, vol. 20, p. 4054-4058.
Cruz, P., Granados, E., Fajardo, M., del Hierro, I., & Pérez, Y., 2019. Heterogeneous oxidative desulfurization catalysed by titanium grafted mesoporous silica nanoparticles containing tethered hydrophobic ionic liquid: A dual activation mechanism. Applied Catalysis A: General, vol. 587, p. 117241.
Liu, R., Dou, S., Yu, M., & Wang, R., 2017. Oxidative desulfurization of fuel oil catalyzed by magnetically recoverable nano-Fe3O4/SiO2 supported heteropoly compounds. Journal of Cleaner Production, vol. 168, p. 1048-1058.
Wang, R., Yu, F., Zhang, G., & Zhao, H., 2010. Performance evaluation of the carbon nanotubes supported Cs2.5H0.5PW12O40 as efficient and recoverable catalyst for the oxidative removal of dibenzothiophene. Catalysis Today, vol. 150, p. 37-41.
Li, S., Gao, R., Zhang, R., & Zhao, J., 2016. Template method for a hybrid catalyst material POM@MOF-199 anchored on MCM-41: Highly oxidative desulfurization of DBT under molecular oxygen. Fuel, vol. 184, p. 18-27.
Wang, S. S., & Yang, G. Y., 2015. Recent advances in polyoxometalate-catalyzed reactions. Chemical reviews, vol. 115, p. 4893–4962.
Xun, S., Jiang, W., Guo, T., He, M., Ma, R., Zhang, M., Zhu, W., & Li, H., 2019. Magnetic mesoporous nanospheres supported phosphomolybdate-based ionic liquid for aerobic oxidative desulfurization of fuel. Journal of Colloid and Interface Science, vol. 534, p. 239-247.
Poursaberi, T., Hasani-sadi, M., Torkestani, K., Karimi-zand, E., 2012. Use of magnetic nanoparticles functionalized with ionic liquids to remove aromatic sulfur compounds of gasoline, Oil Research, vol. 70, p. 77-84.
Zhang, W., Zhang, H., Xiao, J., Zhao, Z., Yu M., Li Z., 2013. Carbon nanotube catalysts for oxidative desulfurization of a model diesel fuel using molecular oxygen. The Royal Society of Chemistry.
Wang, X., Li, F., Liu, J., Kou, C., Zhao, Y., Hao, Y., & Zhao, D., 2012. Preparation of TiO2 in Ionic Liquid via Microwave Radiation and in Situ Photocatalytic Oxidative Desulfurization of Diesel Oil. Energy & Fuels, vol. 26, p. 6777-6782.
Lu, X., Li, X., Qian, J., Miao, N., Yao, C., & Chen, Z., 2016. Synthesis and characterization of CeO2/TiO nanotube arrays and enhanced photocatalytic oxidative desulfurization performance. Journal of Alloys and Compounds, vol. 661, p. 363-371.
Xiao, X., Zhong, H., Zheng, C., Lu, M., Zuo, X., & Nan, J., 2016. Deep oxidative desulfurization of dibenzothiophene using a flower-like WO3·H2O catalyst in an organic biphasic system. Chemical Engineering Journal, vol. 304, p. 908-916.
Yao, X., Wang, C., Liu, H., Li, H., Wu, P., Fan, L., Li, H. and Zhu, W., 2018. Immobilizing highly catalytically molybdenum oxide nanoparticles on graphene-analogous BN: stable heterogeneous catalysts with enhanced aerobic oxidative desulfurization performance. Industrial & Engineering Chemistry Research, vol. 58, p. 863-871.
Gao, Y., Gao, R., Zhang, G., Zheng, Y., Zhao, J., 2018. Oxidative desulfurization of model fuel in the presence of molecular oxygen over polyoxometalate based catalysts supported on carbon nanotubes. Fuel. vol. 224, p. 261–270.
Zou, Y., Wang, C., Chen, H., Ji, H., Zhu, Q., Yang, W., Chen, L., Chen, Z., Zhu, W., 2020, Scalable and facile synthesis of V2O5 nanoparticles via ball milling for improved aerobic oxidative desulfurization. Green Energy & Environment. GEE 323.