شبیه‌سازی و تحلیل ترمودینامیکی فرآیند انبساطی نیتروژن چرخه بسته برای مایع‌سازی گاز طبیعی در مقیاس کوچک

نوع مقاله : پژوهشی

نویسندگان

1 انستیتو گاز طبیعی مایع (ILNG)، گروه مهندسی شیمی، دانشکده فنی، دانشگاه تهران، تهران، ایران

2 پروفسور، انستیتو گاز طبیعی مایع (I-LNG)، دانشکده مهندسی شیمی، دانشکده فنی، دانشگاه تهران، تهران، ایران

3 مدیریت پژوهش و فناوری شرکت ملی گاز ایران، تهران، ایران

4 استادیار، دانشکده مهندسی شیمی، انستیتو مهندسی نفت (IPE)، دانشکده فنی، دانشگاه تهران، تهران، ایران

چکیده

در این پژوهش، یک چرخه انبساطی نیتروژن بسته (Niche) با استفاده از نرم‌­افزار Aspen HYSYS V8.4 شبیه‌­سازی گردیده است. به­منظور ارزیابی فرآیند مذکور از تحلیل­های انرژی و اکسرژی استفاده شده است. نتایج حاصل از تحلیل انرژی نشان داد که میزان توان ویژه مصرفی این فرآیند برابر kWh/kg LNG ۰/۶۸ می­باشد. نتایج حاصل از تحلیل اکسرژی نیز نشان داد که راندمان اکسرژی فرآیند Niche LNG برابر %51/35 است. نتیجه حاصل از این دو تحلیل تعامل بین توان ویژه مصرفی و راندمان اکسرژی بود. علاوه بر این، بالاترین مقدار راندمان و اتلاف اکسرژی، به­ترتیب متعلق به کمپرسور C3 و توربین گازی E1 است. همچنین می­توان گفت این فرآیند برای واحدهای مقیاس کوچک LNG می­تواند گزینه مناسبی است.

کلیدواژه‌ها

موضوعات

[1]      A. Alabdulakram, A. Mortazavi, C. Somers, Y. Hwang, R. Radermacher, P. Rodgers, and S. Al-Hashimi, “Performance enhancement of propane pre-cooled mixed refrigerant LNG plant,” Appl. Energy, vol. 93, no. 6–7, pp. 125–131, 2011.
[2]      Axens. IFP group technology, “Liquefying technical brochure,” 2002.
[3]      K. D. Venkatarathnam, G. and Timmerhaus, Cryogenic mixed refrigerant processes. New York: Springer, 2008.
[4]      C. W. Remeljej and A. F. A. Hoadley, “An exergy analysis of small-scale liquefied natural gas (LNG) liquefaction processes,” Energy, vol. 31, no. 12, pp. 1669–1683, 2006.
[5]      L. Castillo and C. A. Dorao, “Influence of the plot area in an economical analysis for selecting small scale LNG technologies for remote gas production,” J. Nat. Gas Sci. Eng., vol. 2, no. 6, pp. 302–309, 2010.
[6]      W. S. Cao, X. S. Lu, W. S. Lin, and A. Z. Gu, “Parameter comparison of two small-scale natural gas liquefaction processes in skid-mounted packages,” Appl. Therm. Eng., vol. 26, no. 8–9, pp. 898–904, 2006.
[7]      Gas today, “Developing Small-scale LNG Plants,” 2010.
[8]      C. Wensheng, “Natural gas liquefaction process for small-scale LNG project. In Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM),” 2012, pp. 439–442.
[9]      H. M. Chang, M. J. Chung, M. J. Kim, and S. B. Park, “Thermodynamic design of methane liquefaction system based on reversed-Brayton cycle,” Cryogenics (Guildf)., vol. 49, no. 6, pp. 226–234, 2009.
[10]    S. Pérez and R. Díez, “Opportunities of Monetising Natural Gas Reserves Using Small To Medium Scale Lng Technologies,” 2009.
[11]    H. B. Walther S, Franklin D, Ross P, “Liquefaction Solutions for Challenge of New Offshore Fpso Developments,” LNG journal. Mustang Eng. Houst., vol. 4, 2008.
[12]    International Gas Union (I.G.U.), “Small Scale LNG,” 2015.
[13]    B. Howe and G. Skinner, “ZR-LNG TM Dual Expander Methane Cycle Liquefaction Technology Applied to FLNG Authors ZR-LNG TM Dual Expander Methane Cycle Liquefaction Technology Applied to FLNG Introduction Design Perspectives for LNG Liquefaction Technologies.”
[14]    M. A. Ansarinasab H, Mehrpooya M, “Advanced exergy and exergoeconomic analyses of a hydrogen liquefaction plant equipped with mixed refrigerant system,” J. Clean. Prod., vol. 52, no. 144, pp. 248–259, 2017.
[15]    T. He and Y. Ju, “Optimal synthesis of expansion liquefaction cycle for distributed-scale LNG (liquefied natural gas) plant,” Energy, vol. 88, pp. 268–280, 2015.
[16]    Z. Yuan, M. Cui, Y. Xie, and C. Li, “Design and analysis of a small-scale natural gas liquefaction process adopting single nitrogen expansion with carbon dioxide pre-cooling,” Appl. Therm. Eng., vol. 64, no. 1–2, pp. 139–146, 2014.
[17]    T. B. He and Y. L. Ju, “Performance improvement of nitrogen expansion liquefaction process for small-scale LNG plant,” Cryogenics (Guildf)., vol. 61, pp. 111–119, 2014.
[18]    T. He and Y. Ju, “A novel conceptual design of parallel nitrogen expansion liquefaction process for small-scale LNG (liquefied natural gas) plant in skid-mount packages,” Energy, vol. 75, pp. 349–359, 2014.
[19]    P. Moein, M. Sarmad, M. Khakpour, and H. Delaram, “Methane addition effect on a dual nitrogen expander refrigeration cycle for LNG production,” J. Nat. Gas Sci. Eng., vol. 33, pp. 1–7, 2016.
[20]    A. Palizdar, T. Ramezani, Z. Nargessi, S. AmirAfshar, M. Abbasi, and A. Vatani, “Thermodynamic evaluation of three mini-scale nitrogen single expansion processes for liquefaction of natural gas using advanced exergy analysis,” Energy Convers. Manag., vol. 150, no. April, pp. 637–650, 2017.
[21]    F. J.H., “LNG Production Using Dual Independent Expander Refrigeration Cycles,” US Patent 6412302B1, 2002.
[22]    S. S. Pwaga, “Sensitivity Analysis of Proposed LNG liquefaction Processes for LNG FPSO,” no. July, 2011.
[23]    M. S. Khan, S. Lee, M. Getu, and M. Lee, “Knowledge inspired investigation of selected parameters on energy consumption in nitrogen single and dual expander processes of natural gas liquefaction,” J. Nat. Gas Sci. Eng., vol. 23, no. March 2000, pp. 324–337, 2015.
[24]    H. Ding, H. Sun, and M. He, “Optimisation of expansion liquefaction processes using mixed refrigerant N2-CH4,” Appl. Therm. Eng., vol. 93, pp. 1053–1060, 2016.
[25]    A. Vatani, M. Mehrpooya, and A. Palizdar, “Advanced exergetic analysis of five natural gas liquefaction processes,” Energy Convers. Manag., vol. 78, pp. 720–737, 2014.
[26]    T. Kuru and E. T. Iyagba, “Optimization of Natural Gas Liquefaction Processes for Offshore Floating Liquefied Natural Gas Plants,” Int. J. Sci. Eng. Investig., vol. 2, no. 21, pp. 34–39, 2013.